Beschreibung
Backtesting risk measure forecasts requires identifiability (for model validation) and elicitability (for model comparison). The systemic risk measures CoVaR (conditional value-at-risk), CoES (conditional expected shortfall) and MES (marginal expected shortfall), measuring the risk of a position Y given that a reference position X is in distress, fail to be identifiable and elicitable. We establish the joint identifiability of CoVaR, MES and (CoVaR, CoES) together with the value-at-risk (VaR) of the reference position X, but show that an analogue result for elicitability fails. The novel notion of multi-objective elicitability however, relying on multivariate scores equipped with an order, leads to a positive result when using the lexicographic order on R^2. We establish comparative backtests of Diebold-Mariano type for superior systemic risk forecasts and comparable VaR forecasts, accompanied by a traffic-light approach. We demonstrate the viability of these backtesting approaches in an empirical application to DAX 30 and S&P 500 returns. The talk is based on the preprint https://arxiv.org/abs/2104.10673 which is joint work with Yannick Hoga.Zeitraum | 2 Dez. 2021 |
---|---|
Ereignistitel | Talks in Financial and Insurance Mathematics |
Veranstaltungstyp | Keine Angaben |