Persönliches Profil

Forschungsgebiete

Forschungsgebiete

As the deputy head and statistical consultant of the Competence Center for Empirical Research Methods at WU, I am concerned with matters of data analysis and the transfer and application of statistical methods to social and behavioral sciences with a focus on business research and youth mental health. In this line of work I support faculty and graduate students in the correct usage of statistical methodology for answering their research questions and aim at the dissemination of modern statistical procedures into substantive areas.

Additionally, I conduct original statistical research which currently focuses on data analysis, applied and computational statistics. In this work my main motivation is to help improve various aspects of modern, state-of-the-art data analysis, particularly in the following areas:

  • Discrete Data Analysis: count data, categorical data, mixed data types
  • Data Mining and Statistical Learning: tree models, graphical models, clustering, segmentation
  • Exploratory Data Analysis and Data Visualization: multidimensional scaling, proximity scaling, multivariate visualization
  • Multivariate Statistics: chain graph models, clustering, segmentation, association and scaling of variables
  • Natural Language Processing: text mining, topic modeling, visualization
  • Psychometrics: IRT in behavioral and social sciences and business, IRT models for longitudinal data and measurement of change, multidimensional and optimal scaling
  • Statistical Software: R, Python

Lebenslauf

Statistik, Habilitation, Wirtschaftsuniversität Wien

Okt. 2021

Statistik, Dr., Wirtschaftsuniversität Wien

März 2009Mai 2012

Statistik, Mag., Universität Wien

März 2007März 2010

Psychologie, Mag., Universität Wien

Okt. 2000Mai 2008

Statistik, Bakk., Universität Wien

März 2003März 2007

Externe Positionen

Lektor, Harvard University

Jan. 2019Juli 2021

Kompetenzbereich

  • Computationale Statistik
  • Psychometrics
  • Explorative Datenanalyse
  • Datenanalyse
  • Data Science
  • Statistisches Lernen

Österreichische Systematik der Wissenschaftszweige (ÖFOS)

  • 101018 Statistik
  • 102019 Machine Learning
  • 102033 Data Mining
  • 102035 Data Science
  • 102037 Visualisierung
  • 501010 Klinische Psychologie
  • 501006 Experimentalpsychologie
  • 509013 Sozialstatistik

Kooperationen und Spitzenforschungsbereiche der letzten fünf Jahre

Jüngste externe Zusammenarbeit auf Länder-/Gebietsebene. Tauchen Sie ein in Details, indem Sie auf die Punkte klicken, oder: