A goodness-of-fit test for bivariate extreme-value copulas

Christian Genest*, Ivan Kojadinovic, Johanna Nešlehová, Jun Yan

*Korrespondierende*r Autor*in für diese Arbeit

Publikation: Wissenschaftliche FachzeitschriftOriginalbeitrag in FachzeitschriftBegutachtung

Abstract

It is often reasonable to assume that the dependence structure of a bivariate continuous distribution belongs to the class of extreme-value copulas. The latter are characterized by their Pickands dependence function. In this paper, a procedure is proposed for testing whether this function belongs to a given parametric family. The test is based on a Cramér-von Mises statistic measuring the distance between an estimate of the parametric Pickands dependence function and either one of two nonparametric estimators thereof studied by Genest and Segers [Ann. Statist. 37 (2009) 2990-3022]. As the limiting distribution of the test statistic depends on unknown parameters, it must be estimated via a parametric bootstrap procedure, the validity of which is established. Monte Carlo simulations are used to assess the power of the test and an extension to dependence structures that are left-tail decreasing in both variables is considered.

OriginalspracheEnglisch
Seiten (von - bis)253-275
Seitenumfang23
FachzeitschriftBernoulli
Jahrgang17
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - Feb. 2011
Extern publiziertJa

Zitat