A rough set approach for the discovery of classification rules in interval-valued information systems

Yee Leung, Manfred M. Fischer, Wei-Zhi Wu, Ju-Sheng Mi

Publikation: Wissenschaftliche FachzeitschriftOriginalbeitrag in FachzeitschriftBegutachtung

Abstract

A novel rough set approach is proposed in this paper to discover classification rules through a process of knowledge induction which selects decision rules with a minimal set of features for classification of real-valued data. A rough set knowledge discovery framework is formulated for the analysis of interval-valued information systems converted from real-valued raw decision tables. The minimal feature selection method for information systems with interval-valued features obtains all classification rules hidden in a system through a knowledge induction process. Numerical examples are employed to substantiate the conceptual arguments.
OriginalspracheEnglisch
Seiten (von - bis)233 - 246
FachzeitschriftInternational Journal of Approximate Reasoning
Jahrgang47
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 2008

Zitat