Approaches Toward the Bayesian Estimation of the Stochastic Volatility Model with Leverage

Darjus Hosszejni, Gregor Kastner

Publikation: Beitrag in Buch/KonferenzbandBeitrag in Sammelwerk

64 Downloads (Pure)

Abstract

The sampling efficiency of MCMC methods in Bayesian inference for stochastic volatility (SV) models is known to highly depend on the actual parameter values, and the effectiveness of samplers based on different parameterizations varies significantly. We derive novel algorithms for the centered and the non-centered parameterizations of the practically highly relevant SV model with leverage, where the return process and innovations of the volatility process are allowed to correlate. Moreover, based on the idea of ancillarity-sufficiency interweaving (ASIS), we combine the resulting samplers in order to guarantee stable sampling efficiency irrespective of the baseline parameterization. We carry out an extensive comparison to already existing sampling methods for this model using simulated as well as real world data.
OriginalspracheEnglisch
Titel des SammelwerksBayesian Statistics and New Generations - Selected Contributions from BAYSM 2018
Herausgeber*innen Raffaele Argiento, Daniele Durante, Sara Wade
ErscheinungsortCham
VerlagSpringer
Seiten75 - 83
ISBN (Print)978-3-030-30610-6
DOIs
PublikationsstatusVeröffentlicht - 2019

Österreichische Systematik der Wissenschaftszweige (ÖFOS)

  • 102022 Softwareentwicklung
  • 101018 Statistik
  • 502025 Ökonometrie
  • 101026 Zeitreihenanalyse

Zitat