Approximations of unbounded convex projections and unbounded convex sets

Gabriela Kováčová, Birgit Rudloff*

*Korrespondierende*r Autor*in für diese Arbeit

Publikation: Wissenschaftliche FachzeitschriftOriginalbeitrag in FachzeitschriftBegutachtung

Abstract

We consider the problem of projecting a convex set onto a subspace or, equivalently formulated, the problem of computing a set obtained by applying a linear mapping to a convex feasible set. This includes the problem of approximating convex sets by polyhedrons. The existing literature on convex projections provides methods for bounded convex sets only, in this paper we propose a method that can handle both bounded and unbounded problems. The algorithms we propose build on the ideas of inner and outer approximation. In particular, we adapt the recently proposed methods for solving unbounded convex vector optimization problems to handle also the class of projection problems.

OriginalspracheEnglisch
Seiten (von - bis)787-805
Seitenumfang19
FachzeitschriftJournal of Global Optimization
Jahrgang91
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - Apr. 2025

Bibliographische Notiz

Publisher Copyright:
© The Author(s) 2025.

Zitat