Apriori and Sequence Analysis for Discovering Declarative Process Models

Taavi Kala, Fabrizio Maria Maggi, Claudio Di Ciccio, Chiara Di Francescomarino

Publikation: Beitrag in Buch/KonferenzbandBeitrag in Konferenzband

Abstract

The aim of process discovery is to build a process model from an event log without prior information about the process. The discovery of declarative process models is useful when a process works in an unpredictable and unstable environment since several allowed paths can be represented as a compact set of rules. One of the tools available in the literature for discovering declarative models from logs is the Declare Miner, a plug-in of the process mining tool ProM. Using this plug-in, the discovered models are represented using Declare, a declarative process modelling language based on LTL for finite traces. In this paper, we use a combination of an Apriori algorithm and a group of algorithms for Sequence Analysis to improve the performances of the Declare Miner. Using synthetic and real life event logs, we show that the new implemented core of the plug-in allows for a significant performance improvement.
OriginalspracheEnglisch
Titel des Sammelwerks20th IEEE International Enterprise Distributed Object Computing Conference, EDOC 2016, Vienna, Austria, September 5-9, 2016
Herausgeber*innen Florian Matthes, Jan Mendling, Stefanie Rinderle-Ma
ErscheinungsortVienna, Austria
VerlagIEEE
Seiten1 - 9
DOIs
PublikationsstatusVeröffentlicht - 2016

Österreichische Systematik der Wissenschaftszweige (ÖFOS)

  • 502050 Wirtschaftsinformatik
  • 102022 Softwareentwicklung
  • 102

Zitat