Big data streaming for remote sensing time series analytics using MapReduce

Luiz Fernando Assis, Gilberto Ribeiro, Karine Reis Ferreira, Lúbia Vinhas, Eduardo Llapa, Alber Sanchez, Victor Maus, Gilberto Câmara

Publikation: Beitrag in Buch/KonferenzbandBeitrag in Konferenzband

Abstract

Governmental agencies provide a large and open set of satellite imagery which can be used to track changes in geographic features over time. The current available analysis methods are complex and they are very demanding in terms of computing capabilities. Hence, scientist cannot reproduce analytic results because of lack of computing infrastructure. Therefore, we propose a combination of streaming and map-reduce for time series analysis of time series data. We tested our proposal by applying the classification algorithm BFAST to MODIS imagery. Then, we evaluated account computing performance and requirements quality attributes. Our results revealed that the combination between Hadoop and R can handle complex analysis of remote sensing time series.

OriginalspracheEnglisch
Titel des SammelwerksProceedings of the XVII Brazilian Symposium on Geoinformatics (GEOINFO 2016)
Untertitel des SammelwerksCampos do Jordão, SP, Brazil, November 27-30, 2016
Herausgeber*innenCláudio E. C. Campelo, Laércio Massaru Namikawa
ErscheinungsortSão Paulo
VerlagNational Institute for Space Research, INPE
Seiten228-239
Seitenumfang12
PublikationsstatusVeröffentlicht - 2016
Extern publiziertJa
Veranstaltung17th Brazilian Symposium on GeoInformatics, GEOINFO 2016 - Campos do Jordao, Brasilien
Dauer: 27 Nov. 201630 Nov. 2016

Publikationsreihe

ReiheProceedings of the Brazilian Symposium on GeoInformatics
Band2016

Konferenz

Konferenz17th Brazilian Symposium on GeoInformatics, GEOINFO 2016
Land/GebietBrasilien
OrtCampos do Jordao
Zeitraum27/11/1630/11/16

Bibliographische Notiz

Publisher Copyright:
© 2016 National Institute for Space Research INPE. All Rights Reserved.

Zitat