Abstract
Governmental agencies provide a large and open set of satellite imagery which can be used to track changes in geographic features over time. The current available analysis methods are complex and they are very demanding in terms of computing capabilities. Hence, scientist cannot reproduce analytic results because of lack of computing infrastructure. Therefore, we propose a combination of streaming and map-reduce for time series analysis of time series data. We tested our proposal by applying the classification algorithm BFAST to MODIS imagery. Then, we evaluated account computing performance and requirements quality attributes. Our results revealed that the combination between Hadoop and R can handle complex analysis of remote sensing time series.
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | Proceedings of the XVII Brazilian Symposium on Geoinformatics (GEOINFO 2016) |
Untertitel des Sammelwerks | Campos do Jordão, SP, Brazil, November 27-30, 2016 |
Herausgeber*innen | Cláudio E. C. Campelo, Laércio Massaru Namikawa |
Erscheinungsort | São Paulo |
Verlag | National Institute for Space Research, INPE |
Seiten | 228-239 |
Seitenumfang | 12 |
Publikationsstatus | Veröffentlicht - 2016 |
Extern publiziert | Ja |
Veranstaltung | 17th Brazilian Symposium on GeoInformatics, GEOINFO 2016 - Campos do Jordao, Brasilien Dauer: 27 Nov. 2016 → 30 Nov. 2016 |
Publikationsreihe
Reihe | Proceedings of the Brazilian Symposium on GeoInformatics |
---|---|
Band | 2016 |
Konferenz
Konferenz | 17th Brazilian Symposium on GeoInformatics, GEOINFO 2016 |
---|---|
Land/Gebiet | Brasilien |
Ort | Campos do Jordao |
Zeitraum | 27/11/16 → 30/11/16 |
Bibliographische Notiz
Publisher Copyright:© 2016 National Institute for Space Research INPE. All Rights Reserved.