Abstract
Earth observation satellites produce petabytes of geospatial data. To manage large data sets, researchers need stable and efficient solutions that support their analytical tasks. Since the technology for big data handling is evolving rapidly, researchers find it hard to keep up with the new developments. To lower this burden, we argue that researchers should not have to convert their algorithms to specialised environments. Imposing a new API to researchers is counterproductive and slows down progress on big data analytics. This paper assesses the cost of research-friendliness, in a case where the researcher has developed an algorithm in the R language and wants to use the same code for big data analytics. We take an algorithm for remote sensing time series analysis on compare it use on map/reduce and on array database architectures. While the performance of the algorithm for big data sets is similar, organising image data for processing in Hadoop is more complicated and time-consuming than handling images in SciDB. Therefore, the combination of the array database SciDB and the R language offers an adequate support for researchers working on big Earth observation data analytics.
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | Proceedings of the 5th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data (BigSpatial 2016) |
Untertitel des Sammelwerks | San Francisco : October 2016 |
Herausgeber*innen | Ranga Raju Vatsavai, Varun Chandola |
Erscheinungsort | New York |
Verlag | ACM Digital Library |
Seiten | 1-6 |
Seitenumfang | 6 |
ISBN (elektronisch) | 9781450345811 |
DOIs | |
Publikationsstatus | Veröffentlicht - 31 Okt. 2016 |
Extern publiziert | Ja |
Veranstaltung | 5th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, BigSpatial 2016 - San Francisco, USA/Vereinigte Staaten Dauer: 31 Okt. 2016 → … |
Konferenz
Konferenz | 5th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, BigSpatial 2016 |
---|---|
Land/Gebiet | USA/Vereinigte Staaten |
Ort | San Francisco |
Zeitraum | 31/10/16 → … |
Bibliographische Notiz
Publisher Copyright:© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.