Big earth observation data analytics: Matching requirements to system architectures

Gilberto Camara, Luiz Fernando Assis, Gilberto Ribeiro, Karine Reis Ferreira, Eduardo Llapa, Lubia Vinhas, Victor Maus, Alber Sanchez, Ricardo Cartaxo Souza

Publikation: Beitrag in Buch/KonferenzbandBeitrag in Konferenzband

Abstract

Earth observation satellites produce petabytes of geospatial data. To manage large data sets, researchers need stable and efficient solutions that support their analytical tasks. Since the technology for big data handling is evolving rapidly, researchers find it hard to keep up with the new developments. To lower this burden, we argue that researchers should not have to convert their algorithms to specialised environments. Imposing a new API to researchers is counterproductive and slows down progress on big data analytics. This paper assesses the cost of research-friendliness, in a case where the researcher has developed an algorithm in the R language and wants to use the same code for big data analytics. We take an algorithm for remote sensing time series analysis on compare it use on map/reduce and on array database architectures. While the performance of the algorithm for big data sets is similar, organising image data for processing in Hadoop is more complicated and time-consuming than handling images in SciDB. Therefore, the combination of the array database SciDB and the R language offers an adequate support for researchers working on big Earth observation data analytics.

OriginalspracheEnglisch
Titel des SammelwerksProceedings of the 5th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data (BigSpatial 2016)
Untertitel des SammelwerksSan Francisco : October 2016
Herausgeber*innenRanga Raju Vatsavai, Varun Chandola
ErscheinungsortNew York
VerlagACM Digital Library
Seiten1-6
Seitenumfang6
ISBN (elektronisch)9781450345811
DOIs
PublikationsstatusVeröffentlicht - 31 Okt. 2016
Extern publiziertJa
Veranstaltung5th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, BigSpatial 2016 - San Francisco, USA/Vereinigte Staaten
Dauer: 31 Okt. 2016 → …

Konferenz

Konferenz5th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, BigSpatial 2016
Land/GebietUSA/Vereinigte Staaten
OrtSan Francisco
Zeitraum31/10/16 → …

Bibliographische Notiz

Publisher Copyright:
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Zitat