Causal inference for quantile treatment effects

Shuo Sun*, Erica E.M. Moodie, Johanna G. Nešlehová

*Korrespondierende*r Autor*in für diese Arbeit

Publikation: Wissenschaftliche FachzeitschriftOriginalbeitrag in FachzeitschriftBegutachtung

Abstract

Analyses of environmental phenomena often are concerned with understanding unlikely events such as floods, heatwaves, droughts, or high concentrations of pollutants. Yet the majority of the causal inference literature has focused on modeling means, rather than (possibly high) quantiles. We define a general estimator of the population quantile treatment (or exposure) effects (QTE)—the weighted QTE (WQTE)—of which the population QTE is a special case, along with a general class of balancing weights incorporating the propensity score (PS). Asymptotic properties of the proposed WQTE estimators are derived. We further propose and compare PS regression and two weighted methods based on these balancing weights to understand the causal effect of an exposure on quantiles, allowing for the exposure to be binary, discrete, or continuous. Finite sample behavior of the three estimators is studied in simulation. The proposed methods are applied to data taken from the Bavarian Danube catchment area to estimate the 95% QTE of phosphorus on copper concentration in the river.

OriginalspracheEnglisch
Aufsatznummere2668
FachzeitschriftEnvironmetrics
Jahrgang32
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - Juni 2021
Extern publiziertJa

Bibliographische Notiz

Funding Information:
Fonds de Recherche du Québec ‐ Santé, FRQS‐S CB Sr 34840 to E.E.M.M; Institut de Valorisation des Données (IVADO), PRF‐2019‐7771647733; Natural Sciences and Engineering Research Council of Canada, RGPIN‐2019‐04230 to E.E.M.M. and RGPIN‐2015‐06801 to J.G.N Funding information

Funding Information:
information Fonds de Recherche du Qu?bec - Sant?, FRQS-S CB Sr 34840 to E.E.M.M; Institut de Valorisation des Donn?es (IVADO), PRF-2019-7771647733; Natural Sciences and Engineering Research Council of Canada, RGPIN-2019-04230 to E.E.M.M. and RGPIN-2015-06801 to J.G.NThis work was supported by Discovery Grants from the Natural Sciences and Engineering Research Council (NSERC) of Canada (grants RGPIN-2019-04230 to E.E.M.M. and RGPIN-2015-06801 to J.G.N.), the Fonds de Recherche du Qu?bec, Sant? (award FRQS-S CB Sr 34840 to E.E.M.M.), and the Institut de Valorisation des Donn?es (IVADO) Grants (grants PRF-2019-7771647733).

Funding Information:
This work was supported by Discovery Grants from the Natural Sciences and Engineering Research Council (NSERC) of Canada (grants RGPIN‐2019‐04230 to E.E.M.M. and RGPIN‐2015‐06801 to J.G.N.), the Fonds de Recherche du Québec, Santé (award FRQS‐S CB Sr 34840 to E.E.M.M.), and the Institut de Valorisation des Données (IVADO) Grants (grants PRF‐2019‐7771647733).

Publisher Copyright:
© 2021 John Wiley & Sons, Ltd.

Zitat