Cluster Optimized Proximity Scaling

Thomas Rusch, Patrick Mair, Kurt Hornik

Publikation: Wissenschaftliche FachzeitschriftOriginalbeitrag in FachzeitschriftBegutachtung

31 Downloads (Pure)

Abstract

Proximity scaling methods such as Multidimensional Scaling (MDS) represent objects in a low dimensional configuration so that fitted object distances optimally approximate object proximities. Besides finding the optimal configuration, an additional goal may be to make statements about the cluster arrangement of objects. This fails if the configuration lacks appreciable clusteredness. We present Cluster Optimized Proximity Scaling (COPS), which attempts to find a configuration that exhibits clusteredness. In COPS, a flexible parametrized scaling loss function that may emphasize differentiation information in the proximities is augmented with an index (OPTICS Cordillera) that penalizes lack of clusteredness of the configuration. We present two variants of this, one for finding a configuration directly and one for hyperparameter selection for parametric stresses. We apply both to a functional magnetic resonance imaging (fMRI) data set on neural representations of mental states in a social cognition task and show that COPS improves clusteredness of the configuration, enabling visual identification of clusters of mental states. Online supplementary material is available including an R package and a document with additional details.
OriginalspracheEnglisch
Seiten (von - bis)1156 - 1167
FachzeitschriftJournal of Computational and Graphical Statistics
Jahrgang30
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - 2021

Österreichische Systematik der Wissenschaftszweige (ÖFOS)

  • 101018 Statistik
  • 501
  • 509013 Sozialstatistik
  • 509

Zitat