Comprehensive Process Drift Detection with Visual Analytics

Anton Yeshchenko, Claudio Di Ciccio, Jan Mendling, Artem Polyvyanyy

Publikation: Beitrag in Buch/KonferenzbandBeitrag in Konferenzband

Abstract

Recent research has introduced ideas from concept drift into process mining to enable the analysis of changes in business processes over time. This stream of research, however, has not yet addressed the challenges of drift categorization, drilling-down, and quantification. In this paper, we propose a novel technique for managing process drifts, called Visual Drift Detection (VDD), which fulfills these requirements. The technique starts by clustering declarative process constraints discovered from recorded logs of executed business processes based on their similarity and then applies change point detection on the identified clusters to detect drifts. VDD complements these features with detailed visualizations and explanations of drifts. Our evaluation, both on synthetic and real-world logs, demonstrates all the aforementioned capabilities of the technique.
OriginalspracheEnglisch
Titel des SammelwerksConceptual Modeling - 38th International Conference, ER 2019
Herausgeber*innen Alberto H.F. Laender, Barbara Pernici, Ee-Peng Lim, José Palazzo M. de Oliveira
ErscheinungsortSalvador, Brazil
VerlagSpringer
Seiten119 - 135
ISBN (Print)978-3-030-33222-8
DOIs
PublikationsstatusVeröffentlicht - 2019

Österreichische Systematik der Wissenschaftszweige (ÖFOS)

  • 102022 Softwareentwicklung
  • 102
  • 102001 Artificial Intelligence
  • 102013 Human-Computer Interaction
  • 502
  • 502050 Wirtschaftsinformatik

Dieses zitieren