Computing Semantic Association: Comparing Spreading Activation and Spectral Association for Ontology Learning

Gerhard Wohlgenannt, Stefan Belk, Matthias Schett

Publikation: Beitrag in Buch/KonferenzbandBeitrag in Konferenzband

65 Downloads (Pure)

Abstract

Spreading activation is a common method for searching semantic
or neural networks, it iteratively propagates activation for one
or more sources through a network { a process that is computationally
intensive. Spectral association is a recent technique to approximate
spreading activation in one go, and therefore provides very fast computation
of activation levels. In this paper we evaluate the characteristics
of spectral association as replacement for classic spreading activation in
the domain of ontology learning. The evaluation focuses on run-time performance
measures of our implementation of both methods for various
network sizes. Furthermore, we investigate differences in output, i.e. the
resulting ontologies, between spreading activation and spectral association.
The experiments confirm an excessive speedup in the computation
of activation levels, and also a fast calculation of the spectral association
operator if using a variant we called brute force. The paper concludes
with pros and cons and usage recommendations for the methods. (authors' abstract)
OriginalspracheEnglisch
Titel des SammelwerksComputing Semantic Association: Comparing Spreading Activation and Spectral Association for Ontology Learning
Herausgeber*innen Ramanna, S., Lingras, P., Sombattheera, C., Krishna, A. (eds.), MIWAI, Lecture Notes in Computer Science (LNCS) 8271
ErscheinungsortKrabi, Thailand
VerlagSpringer
Seiten317 - 328
PublikationsstatusVeröffentlicht - 1 Dez. 2013

Österreichische Systematik der Wissenschaftszweige (ÖFOS)

  • 102022 Softwareentwicklung
  • 102

Zitat