Configuring SQL-based process mining for performance and storage optimisation

Schönig Stefan, Claudio Di Ciccio, Jan Mendling

Publikation: Beitrag in Buch/KonferenzbandBeitrag in Konferenzband


Process mining is the area of research that embraces the automated discovery, conformance checking and enhancement of process models. Declarative process mining approaches offer capabilities to automatically discover models of flexible processes from event logs. However, they often suffer from performance issues with real-life event logs, especially when constraints to be discovered go beyond a standard repertoire of templates. By leveraging relational database performance technology, a new approach based on SQL querying has been recently introduced, to improve performance though still keeping the nature of discovered constraints customisable. In this paper, we provide an in-depth analysis of configuration parameters that allow for a speed-up of the answering time and a decrease of storage space needed for query processing. Thereupon, we provide configuration recommendations for process mining with SQL on relational databases.
Titel des SammelwerksProceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC 2019
Herausgeber*innen Chih-Cheng Hung and George A. Papadopoulos
ErscheinungsortLimassol, Cyprus
VerlagACM Press
Seiten94 - 97
PublikationsstatusVeröffentlicht - 2019

Österreichische Systematik der Wissenschaftszweige (ÖFOS)

  • 102022 Softwareentwicklung
  • 102
  • 502
  • 502050 Wirtschaftsinformatik