Data augmentation and dynamic linear models

Publikation: Wissenschaftliche FachzeitschriftOriginalbeitrag in FachzeitschriftBegutachtung

Abstract

We define a subclass of dynamic linear models with unknown hyperparameters called d-inverse-gamma models. We then approximate the marginal p.d.f.s of the hyperparameter and the state vector by the data augmentation algorithm of Tanner/Wong. We prove that the regularity conditions for convergence hold. A sampling based scheme for practical implementation is discussed. Finally, we illustrate how to obtain an iterative importance sampling estimate of the model likelihood.
OriginalspracheEnglisch
Seiten (von - bis)183 - 202
FachzeitschriftJournal of Time Series Analysis
Jahrgang15
DOIs
PublikationsstatusVeröffentlicht - 1994

Zitat