Abstract
In this article we consider Bayesian analysis of Poisson regression models. Estimation is carried out within a Bayesian framework using data augmentation and MCMC methods. We suggest a new MCMC sampler, which possesses a Gibbs transition kernel, where we draw from full conditional distributions belonging to standard distribution families, only. This Gibbs sampler is applied to a standard Poisson regression model and to a Poisson regression models
dealing with overdispersion.
dealing with overdispersion.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 207 - 220 |
Fachzeitschrift | Student |
Jahrgang | 5 |
Publikationsstatus | Veröffentlicht - 1 Okt. 2005 |