Abstract
The overall AI trend of creating neuro-symbolic systems is reflected in the Semantic Web community with an increased interest in the development of systems that rely on both Semantic Web resources and Machine Learning components (SWeMLS, for short). However, understanding trends and best practices in this rapidly growing field is hampered by a lack of standardized descriptions of these systems and an annotated corpus of such systems. To address these gaps, we leverage the results of a large-scale systematic mapping study collecting information about 470 SWeMLS papers and formalize these into one resource containing: (i) the SWeMLS ontology, (ii) the SWeMLS pattern library containing machine-actionable descriptions of 45 frequently occurring SWeMLS workflows, and (iii) SWEMLS-KG, a knowledge graph including machine-actionable metadata of the papers in terms of the SWeMLS ontology.
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | The Semantic Web: 20th International Conference, ESWC 2023 |
Erscheinungsort | Cham |
Verlag | Springer Cham |
Seiten | 372–389 |
ISBN (elektronisch) | 978-3-031-33455-9 |
ISBN (Print) | 978-3-031-33454-2 |
DOIs | |
Publikationsstatus | Veröffentlicht - Juni 2023 |
Publikationsreihe
Reihe | Lecture Notes in Computer Science |
---|---|
Nummer | 13870 |
ISSN | 0302-9743 |
Projekte
-
OBARIS: Ontology-Based Artificial Intelligence in Environmental Sector
Ekaputra, F. J. (Projektleitung)
Projekt: Forschungsförderung