Dynamic covariance estimation using sparse Bayesian factor stochastic volatility models

Publikation: Beitrag in Buch/KonferenzbandBeitrag in Konferenzband

Abstract

We address the "curse of dimensionality" arising in time-varying covariance estimation by modeling the underlying volatility dynamics of a time series vector through a lower dimensional collection of latent dynamic factors. Furthermore, we apply a Normal-Gamma shrinkage prior to the elements of the factor loadings matrix, thereby increasing parsimony even more. Estimation is carried out via MCMC in order to obtain draws from the high-dimensional posterior and predictive distributions. To guarantee efficiency of the samplers, we utilize several ancillarity-sufficiency interweaving strategies (ASIS) for sampling the factor loadings. Estimation and forecasting performance is evaluated for simulated and real-world data.
OriginalspracheEnglisch
Titel des SammelwerksProceedings of the 30th International Workshop on Statistical Modelling, Volume 2
Herausgeber*innen Herwig Friedl, Helga Wagner
ErscheinungsortLinz
Seiten139 - 142
PublikationsstatusVeröffentlicht - 2015

Österreichische Systematik der Wissenschaftszweige (ÖFOS)

  • 102022 Softwareentwicklung
  • 101018 Statistik
  • 101026 Zeitreihenanalyse
  • 502025 Ökonometrie

Dieses zitieren