Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models

Publikation: Wissenschaftliche FachzeitschriftOriginalbeitrag in FachzeitschriftBegutachtung

Abstract

We discuss efficient Bayesian estimation of dynamic covariance matrices in multivariate time series through a factor stochastic volatility model. In particular, we propose two interweaving strategies (Yu and Meng, 2011) to substantially accelerate convergence and mixing of standard MCMC approaches. Similar to marginal data augmentation techniques, the proposed acceleration procedures exploit non-identifiability issues which frequently arise in factor models. Our new interweaving strategies are easy to implement and come at almost no extra computational cost; nevertheless, they can boost estimation efficiency by several orders of magnitude as is shown in extensive simulation studies. To conclude, the application of our algorithm to a 26-dimensional exchange rate data set illustrates the superior performance of the new approach for real-world data.
OriginalspracheEnglisch
Seiten (von - bis)905 - 917
FachzeitschriftJournal of Computational and Graphical Statistics
Jahrgang26
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - 2017

Österreichische Systematik der Wissenschaftszweige (ÖFOS)

  • 102022 Softwareentwicklung
  • 101018 Statistik
  • 502025 Ökonometrie
  • 101026 Zeitreihenanalyse

Zitat