Abstract
Intuitively, most datasets found on governmental Open Data portals are organized by spatio-temporal criteria, that is, single datasets provide data for a certain region, valid for a certain time period. Likewise, for many use cases (such as, for instance, data journalism and fact checking) a pre-dominant need is to scope down the relevant datasets to a particular period or region. Rich spatio-temporal annotations are therefore a crucial need to enable semantic search for (and across) Open Data portals along those dimensions, yet – to the best of our knowledge – no working solution exists. To this end, we (i) present a scalable approach to construct a spatio-temporal knowledge graph that hierarchically structures geographical as well as temporal entities, (ii) annotate a large corpus of tabular datasets from open data portals with entities from this knowledge graph, and (iii) enable structured, spatio-temporal search and querying over Open Data catalogs, both via a search interface as well as via a SPARQL endpoint, available at data.wu.ac.at/odgraphsearch/.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 21 - 36 |
Fachzeitschrift | Journal of Web Semantics |
Jahrgang | 55 |
DOIs | |
Publikationsstatus | Veröffentlicht - 2019 |
Österreichische Systematik der Wissenschaftszweige (ÖFOS)
- 102
- 102015 Informationssysteme
- 502050 Wirtschaftsinformatik
Schlagwörter
- Open data
- Spatio-temporal labelling
- knowledge graph