Extremal attractors of Liouville copulas

Léo R. Belzile*, Johanna G. Nešlehová

*Korrespondierende*r Autor*in für diese Arbeit

Publikation: Wissenschaftliche FachzeitschriftOriginalbeitrag in FachzeitschriftBegutachtung

Abstract

Liouville copulas introduced in McNeil and Nešlehová (2010) are asymmetric generalizations of the ubiquitous Archimedean copula class. They are the dependence structures of scale mixtures of Dirichlet distributions, also called Liouville distributions. In this paper, the limiting extreme-value attractors of Liouville copulas and of their survival counterparts are derived. The limiting max-stable models, termed here the scaled extremal Dirichlet, are new and encompass several existing classes of multivariate max-stable distributions, including the logistic, negative logistic and extremal Dirichlet. As shown herein, the stable tail dependence function and angular density of the scaled extremal Dirichlet model have a tractable form, which in turn leads to a simple de Haan representation. The latter is used to design efficient algorithms for unconditional simulation based on the work of Dombry et al. (2016) and to derive tractable formulas for maximum-likelihood inference. The scaled extremal Dirichlet model is illustrated on river flow data of the river Isar in southern Germany.

OriginalspracheEnglisch
Seiten (von - bis)68-92
Seitenumfang25
FachzeitschriftJournal of Multivariate Analysis
Jahrgang160
DOIs
PublikationsstatusVeröffentlicht - Aug. 2017
Extern publiziertJa

Bibliographische Notiz

Funding Information:
Funding in partial support of this work was provided by the Natural Sciences and Engineering Research Council ( RGPIN–2015–06801 , CGSD3–459751–2014 ), the Canadian Statistical Sciences Institute , and the Fonds de recherche du Québec—Nature et technologies ( 2015–PR–183236 ). We thank the acting Editor-in-Chief, Richard A. Lockhart, the Associate Editor, and two anonymous referees for their valuable suggestions.

Publisher Copyright:
© 2017 Elsevier Inc.

Zitat