Factor Augmented Vector Autoregressions, Panel VARs, and Global VARs

Martin Feldkircher*, Florian Huber, Michael Pfarrhofer

*Korrespondierende*r Autor*in für diese Arbeit

Publikation: Beitrag in Buch/KonferenzbandBeitrag in Sammelwerk

Abstract

This chapter provides a thorough introduction to panel, global, and factor augmented vector autoregressive models. These models are typically used to capture interactions across units (i.e., countries) and variable types. Since including a large number of countries and/or variables increases the dimension of the models, all three approaches aim to decrease the dimensionality of the parameter space. After introducing each model, we briefly discuss key specification issues. A running toy example serves to highlight this point and outlines key differences across the different models. To illustrate the merits of the competing approaches, we perform a forecasting exercise and show that it pays off to introduce cross-sectional information in terms of forecasting key macroeconomic quantities.
OriginalspracheEnglisch
Titel des SammelwerksMacroeconomic Forecasting in the Era of Big Data
Herausgeber*innenPeter Fuleky
VerlagSpringer Nature
Kapitel3
Seiten65-93
Seitenumfang28
ISBN (elektronisch)978-3-030-31150-6
ISBN (Print)978-3-030-31149-0
DOIs
PublikationsstatusVeröffentlicht - 29 Nov. 2019

Publikationsreihe

ReiheAdvanced Studies in Theoretical and Applied Econometrics
Band52
ISSN1570-5811

Zitat