Flexible shrinkage in high-dimensional Bayesian spatial autoregressive models

Michael Pfarrhofer, Philipp Piribauer

Publikation: Wissenschaftliche FachzeitschriftOriginalbeitrag in FachzeitschriftBegutachtung

1 Downloads (Pure)

Abstract

Several recent empirical studies, particularly in the regional economic growth literature, emphasize the importance of explicitly accounting for uncertainty surrounding model specification. Standard approaches to deal with the problem of model uncertainty involve the use of Bayesian model-averaging techniques. However, Bayesian model-averaging for spatial autoregressive models suffers from severe drawbacks both in terms of computational time and possible extensions to more flexible econometric frameworks. To alleviate these problems, this paper presents two global–local shrinkage priors in the context of high-dimensional matrix exponential spatial specifications. A simulation study is conducted to evaluate the performance of the shrinkage priors. Results suggest that they perform particularly well in high-dimensional environments, especially when the number of parameters to estimate exceeds the number of observations. Moreover, we use pan-European regional economic growth data to illustrate the performance of the proposed shrinkage priors.
OriginalspracheEnglisch
Seiten (von - bis)109 - 128
FachzeitschriftSpatial Statistics
Jahrgang29
DOIs
PublikationsstatusVeröffentlicht - 2019

Österreichische Systematik der Wissenschaftszweige (ÖFOS)

  • 502025 Ökonometrie
  • 502018 Makroökonomie

Dieses zitieren