Abstract
We develop theoretical finite-sample results concerning the size of wild bootstrap-based heteroskedasticity robust tests in linear regression models. In particular, these results provide an efficient diagnostic check, which can be used to weed out tests that are unreliable for a given testing problem in the sense that they overreject substantially. This allows us to assess the reliability of a large variety of wild bootstrap-based tests in an extensive numerical study.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 789-847 |
Seitenumfang | 59 |
Fachzeitschrift | Econometric Theory |
Jahrgang | 39 |
Ausgabenummer | 4 |
DOIs | |
Publikationsstatus | Veröffentlicht - 27 Aug. 2023 |
Extern publiziert | Ja |
Bibliographische Notiz
Publisher Copyright:© The Author(s), 2022. Published by Cambridge University Press.