Identifying Early Opinion Leaders on COVID-19 on Twitter

Zahra Hatami, Margeret Hall, Neal Thorne

Publikation: Beitrag in Buch/KonferenzbandBeitrag in Konferenzband

Abstract

This study aims to empirically identify opinion leaders on Twitter from the lens of Innovation Diffusion theory. We analyzed pandemic-specific tweets from casual users as well as from the US President to map their conversation for the purpose of finding opinion leaders over a three month period at the onset of the pandemic. By applying network analysis following with cluster enrichment as well as sentiment analysis, we recognize potential thought leaders, but we could not find strong evidence for opinion leaders according to the Innovation Diffusion theory. We interpret that users tweet for two different purposes - tweets to elicit agreement and tweets to elicit debate.
OriginalspracheEnglisch
Titel des SammelwerksHCI International 2021 - Late Breaking Papers
Untertitel des SammelwerksDesign and User Experience ; 23rd HCI International Conference, HCII 2021 Virtual Event, July 24–29, 2021 Proceedings
Herausgeber*innen Constantine Stephanidis et al.
ErscheinungsortCham
VerlagSpringer
Seiten280 - 297
ISBN (elektronisch)978-3-030-90238-4
ISBN (Print)978-3-030-90237-7
DOIs
PublikationsstatusVeröffentlicht - 2021

Publikationsreihe

ReiheLecture Notes in Computer Science
Nummer13094

Österreichische Systematik der Wissenschaftszweige (ÖFOS)

  • 102

Zitat