kernlab - An S4 package for kernel methods in R

Alexandros Karatzoglou, Alex Smola, Kurt Hornik, Achim Zeileis

Publikation: Working/Discussion PaperWU Working Paper

62 Downloads (Pure)

Abstract

kernlab is an extensible package for kernel-based machine learning methods in R. It takes advantage of R's new S4 object model and provides a framework for creating and using kernel-based algorithms. The package contains dot product primitives (kernels), implementations of support vector machines and the relevance vector machine, Gaussian processes, a ranking algorithm, kernel PCA, kernel CCA, and a spectral clustering algorithm. Moreover it provides a general purpose quadratic programming solver, and an incomplete Cholesky decomposition method. (author's abstract)
OriginalspracheEnglisch
ErscheinungsortVienna
HerausgeberInstitut für Statistik und Mathematik, WU Vienna University of Economics and Business
DOIs
PublikationsstatusVeröffentlicht - 2004

Publikationsreihe

ReiheResearch Report Series / Department of Statistics and Mathematics
Nummer9

Bibliographische Notiz

Frühere Version

WU Working Paper Reihe

  • Research Report Series / Department of Statistics and Mathematics

Zitat