Markovian lifts of positive semidefinite affine Volterra-type processes

Christa Cuchiero, Josef Teichmann

Publikation: Wissenschaftliche FachzeitschriftOriginalbeitrag in FachzeitschriftBegutachtung

28 Downloads (Pure)

Abstract

We consider stochastic partial differential equations appearing as Markovian lifts of matrix-valued (affine) Volterra-type processes from the point of view of the generalized Feller property (see, e.g., Dörsek and Teichmann in A semigroup point of view on splitting schemes for stochastic (partial) differential equations, 2010. arXiv:1011.2651). We introduce in particular Volterra Wishart processes with fractional kernels and values in the cone of positive semidefinite matrices. They are constructed from matrix products of infinite dimensional Ornstein–Uhlenbeck processes whose state space is the set of matrix-valued measures. Parallel to that we also consider positive definite Volterra pure jump processes, giving rise to multivariate Hawkes-type processes. We apply these affine covariance processes for multivariate (rough) volatility modeling and introduce a (rough) multivariate Volterra Heston-type model.
OriginalspracheEnglisch
Seiten (von - bis)407-448
FachzeitschriftDecisions in Economics and Finance
Jahrgang42
DOIs
PublikationsstatusVeröffentlicht - 2019

Zitat