Model-based clustering of categorical time series

Christoph Pamminger, Sylvia Frühwirth-Schnatter

Publikation: Wissenschaftliche FachzeitschriftOriginalbeitrag in FachzeitschriftBegutachtung

Abstract

Two approaches for model-based clustering of categorical time series based on time-homogeneous first-order Markov chains are discussed. For Markov chain clustering the individual transition probabilities are fixed to a group-specific transition matrix. In a new approach called Dirichlet multinomial clustering the rows of the individual transition matrices deviate from the group mean and follow a Dirichlet distribution with unknown group-specific hyperparameters. Estimation is carried out through Markov chain Monte Carlo. Various well-known clustering criteria are applied to select the number of groups. An application to a panel of Austrian wage mobility data leads to an interesting segmentation of the Austrian labor market.
OriginalspracheEnglisch
Seiten (von - bis)345 - 368
FachzeitschriftBayesian Analysis
Jahrgang5
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 2010

Zitat