Model Uncertainty and Aggregated Default Probabilities: New Evidence from Austria

Paul Hofmarcher, Stefan Kerbl, Bettina Grün, Michael Sigmund, Kurt Hornik

Publikation: Working/Discussion PaperWU Working Paper

67 Downloads (Pure)

Abstract

Understanding the determinants of aggregated default probabilities (PDs) has attracted substantial research over the past decades. This study addresses two major difficulties in understanding the determinants of aggregate PDs: Model uncertainty and multicollinearity among the regressors. We present Bayesian Model Averaging (BMA) as a powerful tool that overcomes model uncertainty. Furthermore, we supplement BMA with ridge regression to mitigate multicollinearity. We apply our approach to an Austrian dataset. Our findings suggest that factor prices like short term interest rates and energy prices constitute major drivers of default rates, while firms' profits reduce the expected number of failures. Finally, we show that the results of our baseline model are fairly robust to the choice of the prior model size.
OriginalspracheEnglisch
DOIs
PublikationsstatusVeröffentlicht - 1 Okt. 2012

Publikationsreihe

ReiheResearch Report Series / Department of Statistics and Mathematics
Nummer116

WU Working Paper Reihe

  • Research Report Series / Department of Statistics and Mathematics

Zitat