Multi-Neighborhood Search for the Makespan Minimization Problem on Parallel Identical Machines with Conflicting Jobs

Roberto Maria Rosati*, Dinh Quy Ta, Minh Hoàng Hà, Andrea Schaerf

*Korrespondierende*r Autor*in für diese Arbeit

Publikation: Beitrag in Buch/KonferenzbandBeitrag in Konferenzband

Abstract

Scheduling conflicting jobs on parallel identical machines is gaining increasing attention in the scientific literature. Among the several possible objective functions proposed so far, we investigate the makespan minimization. As solution approach we propose a Multi-Neighborhood Search method, which uses three neighborhoods (Move, Swap and 2-Opt, adapted from the Vehicle Routing literature) on an implicit solution representation. The search is guided by a Simulated Annealing metaheuristic. Experiments show that our method solves small instances consistently to the optimum and outperforms a constraint programming model on larger or highly conflicted instances, in much shorter runtimes.

OriginalspracheEnglisch
Titel des SammelwerksMetaheuristics - 15th International Conference, MIC 2024, Proceedings
Herausgeber*innenMarc Sevaux, Alexandru-Liviu Olteanu, Eduardo G. Pardo, Angelo Sifaleras, Salma Makboul
ErscheinungsortCham
VerlagSpringer
Seiten373-379
Seitenumfang7
ISBN (elektronisch)9783031629228
ISBN (Print)9783031629211
DOIs
PublikationsstatusVeröffentlicht - 2024
Extern publiziertJa
Veranstaltung15th Metaheuristics International Conference, MIC 2024 - Lorient, Frankreich
Dauer: 4 Juni 20247 Juni 2024

Publikationsreihe

ReiheLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band14754
ISSN0302-9743

Konferenz

Konferenz15th Metaheuristics International Conference, MIC 2024
Land/GebietFrankreich
OrtLorient
Zeitraum4/06/247/06/24

Bibliographische Notiz

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

Zitat