On the Number of Times where a simple Random Walk reaches its Maximum

Walter Katzenbeisser, Wolfgang Panny

Publikation: Working/Discussion PaperWU Working Paper

44 Downloads (Pure)

Abstract

Let Q, denote the number of times where a simple random walk reaches its maximum, where the random walk starts at the origin and returns to the origin after 2n steps. Such random walks play an important r6le in probability and statistics. In this paper the distribution and the moments of Q, are considered and their asymptotic behavior is studied. (author's abstract)
OriginalspracheEnglisch
ErscheinungsortVienna
HerausgeberDepartment of Statistics and Mathematics, WU Vienna University of Economics and Business
DOIs
PublikationsstatusVeröffentlicht - 1990

Publikationsreihe

ReiheForschungsberichte / Institut für Statistik
Nummer2

WU Working Paper Reihe

  • Forschungsberichte / Institut für Statistik

Zitat