TY - JOUR
T1 - Order-sensitivity and equivariance of scoring functions
AU - Fissler, Tobias
AU - Ziegel, Johanna F.
PY - 2019
Y1 - 2019
N2 - The relative performance of competing point forecasts is usually measured in terms of loss or scoring functions. It is widely accepted that these scoring function should be strictly consistent in the sense that the expected score is minimized by the correctly specified forecast for a certain statistical functional such as the mean, median, or a certain risk measure. Thus, strict consistency opens the way to meaningful forecast comparison, but is also important in regression and M-estimation. Usually strictly consistent scoring functions for an elicitable functional are not unique. To give guidance on the choice of a scoring function, this paper introduces two additional quality criteria. Order-sensitivity opens the possibility to compare two deliberately misspecified forecasts given that the forecasts are ordered in a certain sense. On the other hand, equivariant scoring functions obey similar equivariance properties as the functional at hand – such as translation invariance or positive homogeneity. In our study, we consider scoring functions for popular functionals, putting special emphasis on vector-valued functionals, e.g. the pair (mean, variance) or (Value at Risk, Expected Shortfall).
AB - The relative performance of competing point forecasts is usually measured in terms of loss or scoring functions. It is widely accepted that these scoring function should be strictly consistent in the sense that the expected score is minimized by the correctly specified forecast for a certain statistical functional such as the mean, median, or a certain risk measure. Thus, strict consistency opens the way to meaningful forecast comparison, but is also important in regression and M-estimation. Usually strictly consistent scoring functions for an elicitable functional are not unique. To give guidance on the choice of a scoring function, this paper introduces two additional quality criteria. Order-sensitivity opens the possibility to compare two deliberately misspecified forecasts given that the forecasts are ordered in a certain sense. On the other hand, equivariant scoring functions obey similar equivariance properties as the functional at hand – such as translation invariance or positive homogeneity. In our study, we consider scoring functions for popular functionals, putting special emphasis on vector-valued functionals, e.g. the pair (mean, variance) or (Value at Risk, Expected Shortfall).
UR - https://projecteuclid.org/euclid.ejs/1554429627
U2 - 10.1214/19-EJS1552
DO - 10.1214/19-EJS1552
M3 - Journal article
SN - 1935-7524
VL - 13
SP - 1166
EP - 1211
JO - Electronic Journal of Statistics
JF - Electronic Journal of Statistics
IS - 1
ER -