Scholarly Wikidata: Population and Exploration of Conference Data in Wikidata using LLMs

Nandana Mihindukulasooriya, Sanju Tiwari, Daniel Dobriy, Finn Arup Nielsen, Tek Raj Chhetri, Axel Polleres

Publikation: Beitrag in Buch/KonferenzbandBeitrag in Konferenzband

Abstract

Several initiatives have been undertaken to conceptually model the domain of scholarly data using ontologies and to create respective Knowledge Graphs. Yet, the full potential seems unleashed, as automated means for automatic population of said ontologies are lacking, and respective initiatives from the Semantic Web community are not necessarily connected: we propose to make scholarly data more sustainably accessible by leveraging Wikidata’s infrastructure and automating its population in a sustainable manner through LLMS by tapping into unstructured sources like conference Web sites and proceedings texts as well as already existing structured conference datasets. While an initial analysis
shows that Semantic Web conferences are only minimally represented in Wikidata, we argue that our methodology can help to populate, evolve and maintain scholarly data as a community within Wikidata.

Our main contributions include (a) an analysis of ontologies for representing scholarly data to identify gaps and relevant entities/properties in Wikidata, (b) semi-automated extraction – requiring (minimal) manual validation – of conference metadata (e.g., acceptance rates, organizer roles, programme committee members, best paper awards, keynotes, and sponsors) from websites and proceedings texts using LLMs. Finally, we discuss (c) extensions to visualization tools in the Wikidata context for data exploration of the generated scholarly data. While our study focuses on data from 105 Semantic Web-related conferences, we expect our method to be more generally applicable for enhancing Wikidata’s utility as a comprehensive scholarly resource.
OriginalspracheEnglisch
Titel des SammelwerksKnowledge Engineering and Knowledge Management
Untertitel des Sammelwerks24th International Conference, EKAW 2024, Amsterdam, The Netherlands, November 26–28, 2024, Proceedings
ErscheinungsortCham
VerlagSpringer
Seiten243–259
ISBN (elektronisch)978-3-031-77792-9
ISBN (Print)978-3-031-77791-2
DOIs
PublikationsstatusVeröffentlicht - 12 Sept. 2024
Veranstaltung24th International Conference on Knowledge Engineering and Knowledge Management - Amsterdam, Niederlande
Dauer: 26 Nov. 202428 Nov. 2024
Konferenznummer: 2024
https://event.cwi.nl/ekaw2024/

Publikationsreihe

ReiheLecture Notes in Computer Science (LNCS)
Band15370
ISSN0302-9743

Konferenz

Konferenz24th International Conference on Knowledge Engineering and Knowledge Management
KurztitelEKAW
Land/GebietNiederlande
OrtAmsterdam
Zeitraum26/11/2428/11/24
Internetadresse

Österreichische Systematik der Wissenschaftszweige (ÖFOS)

  • 102001 Artificial Intelligence
  • 102030 Semantische Technologien
  • 102028 Knowledge Engineering

Zitat