Should I stay or should I go? A latent threshold approach to large-scale mixture innovation models

Florian Huber, Gregor Kastner, Martin Feldkircher

Publikation: Wissenschaftliche FachzeitschriftOriginalbeitrag in FachzeitschriftBegutachtung

5 Downloads (Pure)

Abstract

We propose a straightforward algorithm to estimate large Bayesian time-varying parameter vector autoregressions with mixture innovation components for each coefficient in the system. The computational burden becomes manageable by approximating the mixture indicators driving the time-variation in the coefficients with a latent threshold process that depends on the absolute size of the shocks. Two applications illustrate the merits of our approach. First, we forecast the US term structure of interest rates and demonstrate forecast gains relative to benchmark models. Second, we apply our approach to US macroeconomic data and find significant evidence for time-varying effects of a monetary policy tightening.
OriginalspracheEnglisch
Seiten (von - bis)621 - 640
FachzeitschriftJournal of Applied Econometrics
Jahrgang34
Ausgabenummer5
DOIs
PublikationsstatusVeröffentlicht - 2019

Bibliographische Notiz

Aktualisierte Version

Österreichische Systematik der Wissenschaftszweige (ÖFOS)

  • 502025 Ökonometrie
  • 101018 Statistik
  • 101026 Zeitreihenanalyse
  • 102022 Softwareentwicklung

Dieses zitieren