Should I Stay or Should I Go? Bayesian Inference in the Threshold Time Varying Parameter (TTVP) Model

Florian Huber, Gregor Kastner, Martin Feldkircher

Publikation: Working/Discussion PaperWU Working Paper

49 Downloads (Pure)

Abstract

Incorporating structural changes into time series models is crucial during turbulent economic periods. In this paper, we propose a flexible means of estimating vector autoregressions with time-varying parameters (TVP-VARs) by introducing a threshold process that is driven by the absolute size of parameter changes. This enables us to detect whether a given regression coefficient is constant or time-varying. When applied to a medium-scale macroeconomic US dataset our model yields precise density and turning point predictions, especially during economic downturns, and provides new insights on the changing effects of increases in short-term interest rates over time.
OriginalspracheEnglisch
DOIs
PublikationsstatusVeröffentlicht - 2017

Publikationsreihe

ReiheResearch Report Series / Department of Statistics and Mathematics
Nummer130

Bibliographische Notiz

Frühere Version

Österreichische Systematik der Wissenschaftszweige (ÖFOS)

  • 102022 Softwareentwicklung
  • 101018 Statistik
  • 502025 Ökonometrie
  • 101026 Zeitreihenanalyse

WU Working Paper Reihe

  • Research Report Series / Department of Statistics and Mathematics

Zitat