Using deep neural networks for extracting sentiment targets in arabic tweets

Ayman El-Kilany, Amr Azzam, Samhaa R. El-Beltagy

Publikation: Beitrag in Buch/KonferenzbandBeitrag in Sammelwerk

Abstract

In this paper, we investigate the problem of recognizing entities which are targeted by text sentiment in Arabic tweets. To do so, we train a bidirectional LSTM deep neural network with conditional random fields as a classification layer on top of the network to discover the features of this specific set of entities and extract them from Arabic tweets. We’ve evaluated the network performance against a baseline method which makes use of a regular named entity recognizer and a sentiment analyzer. The deep neural network has shown a noticeable advantage in extracting sentiment target entities from Arabic tweets.
OriginalspracheEnglisch
Titel des SammelwerksIntelligent natural language processing
Untertitel des Sammelwerkstrends and applications
Herausgeber*innenKhaled Shaalan, Aboul Ella Hassanien, Fahmy Tolba
ErscheinungsortCham
VerlagSpringer
Seiten3-15
Seitenumfang13
Auflage1
ISBN (elektronisch)978-3-319-67056-0
ISBN (Print)978-3-319-67055-3
DOIs
PublikationsstatusVeröffentlicht - 2018

Publikationsreihe

ReiheStudies in Computational Intelligence
Band740
ISSN1860-949X

Zitat