Activity: Talk or presentation › Science to science
Description
The set of all Eulerian subgraphs of some undirected graph G together with the geometric difference of edges forms a vector space over GF(2). Its bases have been intensively studied and various kinds like minimal length, fundamental or robust cycle bases have been described and investigated. In this talk we introduce the concept of convex cycle bases that entirely consists of elementary cycles that are (geodetically) convex subgraphs of G, i.e., that contain all shortest path between any two vertex of these cycles. We present a polynomial time algorithm that determines whether such a cycle basis exists and returns one in case of existence. Moreover, we provide examples of graphs with convex cycle basis, including outer planar graphs, partial cubes and median graphs.
Period
20 Jun 2011 → 24 Jun 2011
Event title
7th Slovenian International Conference on Graph Theory