12 Downloads (Pure)


The literature on recommendation systems indicates that the choice of the methodology significantly influences the quality of recommendations. The impact of the amount of available data on the performance of recommendation systems has not been systematically investigated. We study different approaches to recommendation systems using the publicly available EachMovie data set. In contrast to previous work on this data set, here a significantly higher subset is used. The effects caused by the number of customers and movies as well as their interaction with different methods are investigated. We compare two commonly used collaborative filtering approaches to several regression models using an experimental full factorial design. According to our findings, the number of customers significantly influences the performance of all approaches under study. For a large number of customers and movies, we show that simple linear regression with model selection can provide significantly better recommendations than collaborative filtering. From a managerial perspective, this gives suggestions about the selection of the model to be used depending on the amount of data available. Furthermore, the impact of an enlargement of the customer database on the quality of recommendations is shown. (author's abstract)
Original languageEnglish
Place of PublicationVienna
PublisherSFB Adaptive Information Systems and Modelling in Economics and Management Science, WU Vienna University of Economics and Business
Publication statusPublished - 2001

Publication series

SeriesWorking Papers SFB "Adaptive Information Systems and Modelling in Economics and Management Science"

WU Working Paper Series

  • Working Papers SFB \Adaptive Information Systems and Modelling in Economics and Management Science\

Cite this