Abstract

A new ensemble method for cluster analysis is introduced, which can be interpreted in two different ways: As complexity-reducing preprocessing stage for hierarchical clustering and as combination procedure for several partitioning results. The basic idea is to locate and combine structurally stable cluster centers and/or prototypes. Random effects of the training set are reduced by repeatedly training on resampled sets (bootstrap samples). We discuss the algorithm both from a more theoretical and an applied point of view and demonstrate it on several data sets. (author's abstract)
Original languageEnglish
Place of PublicationVienna
PublisherSFB Adaptive Information Systems and Modelling in Economics and Management Science, WU Vienna University of Economics and Business
Publication statusPublished - 1999

Publication series

SeriesWorking Papers SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
Number51

WU Working Paper Series

  • Working Papers SFB \Adaptive Information Systems and Modelling in Economics and Management Science\

Cite this