Abstract
Traditionally, social scientists perceived causality as regularity. As a consequence, qualitative comparative case study research was regarded as unsuitable for drawing causal inferences since a few cases cannot establish regularity. The dominant perception of causality has changed, however. Nowadays, social scientists define and identify causality through the counterfactual effect of a treatment. This brings causal inference in qualitative comparative research back on the agenda since comparative case studies can identify counterfactual treatment effects. We argue that the validity of causal inferences from the comparative study of cases depends on the employed case-selection algorithm. We employ Monte Carlo techniques to demonstrate that different case-selection rules strongly differ in their ex ante reliability for making valid causal inferences and identify the most and the least reliable case selection rules.
Original language | English |
---|---|
Article number | e0219727 |
Journal | PLoS ONE |
Volume | 14 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2019 |
Bibliographical note
Publisher Copyright:© 2019 Plümper et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Austrian Classification of Fields of Science and Technology (ÖFOS)
- 506014 Comparative politics
- 502027 Political economy
- 509