Film-thickness-dependent conduction in ordered Si quantum dot arrays

K. Surana*, H. Lepage, J. M. Lebrun, B. Doisneau, D. Bellet, L. Vandroux, G. Le Carval, M. Baudrit, P. Thony, P. Mur

*Corresponding author for this work

Publication: Scientific journalJournal articlepeer-review

Abstract

In recent years, silicon nanostructures have been investigated extensively for their potential use in photonic and photovoltaic applications. So far, for silicon quantum dots embedded in SiO 2, control over inter-dot distance and size has only been observed in multiple bilayer stacks of silicon-rich oxides and silicon dioxide. In this work, for the first time the fabrication of spatially well-ordered Si quantum dots (QDs) in SiO 2 is demonstrated, without using the multilayer approach. This ordered formation, confirmed with TEM micrographs, depends on the thickness of the initially deposited sub-stoichiometric silicon oxide film. Grazing incidence x-ray diffraction confirms the crystallinity of the 5nm QDs while photoluminescence shows augmented bandgap values. Low-temperature currentvoltage measurements demonstrate film thickness and order-dependent conduction mechanisms, showing the transition from temperature-dependent conduction in randomly placed dots to temperature-independent tunnelling for geometrically ordered nanocrystals. Contrary to expectations from dielectric materials, significant conduction and photocarrier generation have been observed in our Si QDs embedded in SiO 2 demonstrating the possibility of forming initial film-thickness-controlled conductive films. This conduction via the silicon quantum dots in thick single layers is a promising result for integration into photovoltaic devices.

Original languageEnglish
Article number105401
JournalNanotechnology
Volume23
Issue number10
DOIs
Publication statusPublished - 16 Mar 2012
Externally publishedYes

Cite this