TY - JOUR
T1 - Implementing a Class of Permutation Tests: The coin Package
AU - Hothorn, Torsten
AU - Hornik, Kurt
AU - van de Wiel, Mark A.
AU - Zeileis, Achim
N1 - Updated version
PY - 2008/11/1
Y1 - 2008/11/1
N2 - The R package coin implements a unified approach to permutation tests providing a huge class of independence tests for nominal, ordered, numeric, and censored data as well as multivariate data at mixed scales. Based on a rich and flexible conceptual framework that embeds different permutation test procedures into a common theory, a computational framework is established in coin that likewise embeds the corresponding R functionality in a common S4 class structure with associated generic functions. As a consequence, the computational tools in coin inherit the flexibility of the underlying theory and conditional inference functions for important special cases can be set up easily. Conditional versions of classical tests---such as tests for location and scale problems in two or more samples, independence in two- or three-way contingency tables, or association problems for censored, ordered categorical or multivariate data---can easily be implemented as special cases using this computational toolbox by choosing appropriate transformations of the observations. The paper gives a detailed exposition of both the internal structure of the package and the provided user interfaces along with examples on how to extend the implemented functionality.
AB - The R package coin implements a unified approach to permutation tests providing a huge class of independence tests for nominal, ordered, numeric, and censored data as well as multivariate data at mixed scales. Based on a rich and flexible conceptual framework that embeds different permutation test procedures into a common theory, a computational framework is established in coin that likewise embeds the corresponding R functionality in a common S4 class structure with associated generic functions. As a consequence, the computational tools in coin inherit the flexibility of the underlying theory and conditional inference functions for important special cases can be set up easily. Conditional versions of classical tests---such as tests for location and scale problems in two or more samples, independence in two- or three-way contingency tables, or association problems for censored, ordered categorical or multivariate data---can easily be implemented as special cases using this computational toolbox by choosing appropriate transformations of the observations. The paper gives a detailed exposition of both the internal structure of the package and the provided user interfaces along with examples on how to extend the implemented functionality.
UR - http://www.jstatsoft.org/v28/i08/paper
M3 - Journal article
SN - 1548-7660
VL - 28
SP - 1
EP - 23
JO - Journal of Statistical Software
JF - Journal of Statistical Software
IS - 8
ER -