Abstract
In this paper we will show how recent advances in the combinatorics of lattice paths can be applied to solve interesting and nontrivial problems in the theory of queues. The problems we discuss range from classical ones like M^a/M^b/1 systems to open tandem systems with and without global blocking and to queueing models that are related to random walks in a quarter plane like the Flatto-Hahn model or systems with preemptive priorities. (author´s abstract)
In diesem Paper wird gezeigt, wie neuere Entwicklungen in der Kombinatorik von Gitterpunktwegen die Loesung interessanter und nichttrivialer Probleme in der Wartschlangentheorie ermoeglichen. Die Probleme, die hier untersucht werden, reichen von klassischen M^a/M^b/1 Systemen hin zu Tandemnetzwerken mit und ohne Global Blocking. Diskutiert werden auch Modelle, die sich auf Random Walks im 1. Quadranten zurueckführen lassen, wie das Modell von Flatto-Hahn oder Systeme mit preemptiven Prioritäten.
In diesem Paper wird gezeigt, wie neuere Entwicklungen in der Kombinatorik von Gitterpunktwegen die Loesung interessanter und nichttrivialer Probleme in der Wartschlangentheorie ermoeglichen. Die Probleme, die hier untersucht werden, reichen von klassischen M^a/M^b/1 Systemen hin zu Tandemnetzwerken mit und ohne Global Blocking. Diskutiert werden auch Modelle, die sich auf Random Walks im 1. Quadranten zurueckführen lassen, wie das Modell von Flatto-Hahn oder Systeme mit preemptiven Prioritäten.
Original language | English |
---|---|
DOIs | |
Publication status | Published - 1 Nov 2008 |
Publication series
Series | Research Report Series / Department of Statistics and Mathematics |
---|---|
Number | 74 |
WU Working Paper Series
- Research Report Series / Department of Statistics and Mathematics