Reproducibility in Management Science

Miloš Fišar, Ben Greiner*, Christoph Huber, Elena Katok, Ali Ozkes, Management Science Reproducibility Collaboration

*Corresponding author for this work

Publication: Working/Discussion PaperWU Working Paper

51 Downloads (Pure)


With the help of more than 700 reviewers we assess the reproducibility of nearly 500 articles published in the journal Management Science before and after the introduction of a new Data and Code Disclosure policy in 2019. When considering only articles for which data accessibility and hard- and software requirements were not an obstacle for reviewers, the results of more than 95% of articles under the new disclosure policy could be fully or largely computationally reproduced. However, for almost 29% of articles at least part of the dataset was not accessible for the reviewer. Considering all articles in our sample reduces the share of reproduced articles to 68%. The introduction of the disclosure policy increased reproducibility significantly, since only 12% of articles accepted before the introduction of the disclosure policy voluntarily provided replication materials, out of which 55% could be (largely) reproduced. Substantial eterogeneity in reproducibility rates across different fields is mainly driven by differences in dataset accessibility. Other reasons for unsuccessful reproduction attempts include missing code, unresolvable code errors, weak or missing documentation, but also soft- and hardware requirements and code complexity. Our findings highlight the importance of journal code and data disclosure policies, and suggest potential avenues for enhancing their effectiveness.
Original languageEnglish
PublisherWU Vienna University of Economics and Business
Publication statusPublished - 1 Nov 2023

Publication series

SeriesDepartment of Strategy and Innovation Working Paper Series

WU Working Paper Series

  • Department of Strategy and Innovation Working Paper Series


  • reproducibility, replication, crowd science

Cite this