Selective Association Rule Generation.

Michael Hahsler, Christian Buchta, Kurt Hornik

Publication: Scientific journalJournal articlepeer-review

Abstract

Mining association rules is a popular and well researched method for discovering interesting relations between variables in large databases. A practical problem is that at medium to low support values often a large number of frequent itemsets and an even larger number of association rules are found in a database. A widely used approach is to gradually increase minimum support and minimum confidence or to filter the found rules using increasingly strict constraints on additional measures of interestingness until the set of rules found is reduced to a manageable size. In this paper we describe a different approach which is based on the idea to first define a set of “interesting” itemsets (e.g., by a mixture of mining and expert knowledge) and then, in a second step to selectively generate rules for only these itemsets. The main advantage of this approach over increasing thresholds or filtering rules is that the number of rules found is significantly reduced while at the same time it is not necessary to increase the support and confidence thresholds which might lead to missing important information in the database.
Original languageEnglish
Pages (from-to)303 - 315
JournalComputational Statistics
Volume23
Issue number2
Publication statusPublished - 1 Nov 2008

Cite this