Tidy Finance with R

Christoph Scheuch, Stefan Voigt, Patrick Weiss

Publication: Book/Editorship/ReportBook (monograph)

Abstract

This textbook shows how to bring theoretical concepts from finance and econometrics to the data. Focusing on coding and data analysis with R, we show how to conduct research in empirical finance from scratch. We start by introducing the concepts of tidy data and coding principles using the tidyverse family of R packages. Code is provided to prepare common open-source and proprietary financial data sources (CRSP, Compustat, Mergent FISD, TRACE) and organize them in a database. We reuse these data in all the subsequent chapters, which we keep as self-contained as possible. The empirical applications range from key concepts of empirical asset pricing (beta estimation, portfolio sorts, performance analysis, Fama-French factors) to modeling and machine learning applications (fixed effects estimation, clustering standard errors, difference-in-difference estimators, ridge regression, Lasso, Elastic net, random forests, neural networks) and portfolio optimization techniques.

Original languageEnglish
Place of PublicationMilton
PublisherCRC Press LLC
Number of pages268
Edition1.
ISBN (Electronic)9781003347538
ISBN (Print)9781000858716
DOIs
Publication statusPublished - 5 Apr 2023

Publication series

SeriesChapman & Hall/CRC The R Series

Cite this