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Abstract

Correlated ordinal data typically arise from multiple measurements on a collection of sub-

jects. Motivated by an application in credit risk, where multiple credit rating agencies assess

the creditworthiness of a firm on an ordinal scale, we consider multivariate ordinal models with

a latent variable specification and correlated error terms. Two different link functions are em-

ployed, by assuming a multivariate normal and a multivariate logistic distribution for the latent

variables underlying the ordinal outcomes. Composite likelihood methods, more specifically the

pairwise and tripletwise likelihood approach, are applied for estimating the model parameters.

We investigate how sensitive the pairwise likelihood estimates are to the number of subjects and

to the presence of observations missing completely at random, and find that these estimates are

robust for both link functions and reasonable sample size. The empirical application consists

of an analysis of corporate credit ratings from the big three credit rating agencies (Standard &

Poor’s, Moody’s and Fitch). Firm-level and stock price data for publicly traded US companies

as well as an incomplete panel of issuer credit ratings are collected and analyzed to illustrate the

proposed framework.
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1 Introduction

The analysis of univariate or multivariate ordinal outcomes is an important task in various fields

of research from social sciences to medical and clinical research. A typical setting where correlated

ordinal outcomes arise naturally is when several raters assign different ratings on a collection of

subjects. In the financial markets literature ordinal data often appear in the form of credit ratings

(e.g., Cantor and Packer, 1997; Blume et al., 1998; Bongaerts et al., 2012; Becker and Milbourn,

2011; Alp, 2013). Credit ratings are ordinal rankings of credit risk, i.e., the risk of a firm not being

able to meet its financial obligations, and are typically produced by credit rating agencies (CRAs).

Especially in the US, CRAs like Standard and Poor’s (S&P), Moody’s and Fitch play a significant

role in financial markets, with their credit ratings being one of the most common and widely used

sources of information about credit quality.

The CRAs provide in their issuer ratings a forward-looking opinion on the total creditworthiness

of a firm. In evaluating credit quality, quantitative and qualitative criteria are employed. The

quantitative analysis relies mainly on the assessment of market conditions and on financial analysis.

Key financial ratios, built from market information and financial statements, are used to evaluate

several aspects of a firm’s performance (according to Puccia et al., 2013, such aspects are profitability,

leverage, cash-flow adequacy, liquidity, and financial flexibility). In credit risk modeling, the literature

on credit ratings so far usually considered separate models for one or more CRAs. For example, Blume

et al. (1998) as well as Alp (2013) use ordinal regression models with financial ratios as explanatory

variables to obtain insights into the rating behavior of S&P.

In general, the ratings from the big three CRAs do not always coincide and they sometimes

differ by several rating notches due to multiple reasons. First, S&P and Fitch use different rating

scales compared to Moody’s. Second, S&P and Fitch consider probabilities of default as the key

measure of creditworthiness, while Moody’s ratings also incorporate information about recovery rates

in case of default. Third, given the fact that the rating and estimation methodology of the CRAs

is not completely disclosed, there is ambiguity about whether the CRAs give different importance

to different covariates in their analysis. In view of these facts, a multivariate analysis, where credit

ratings are considered as dependent variables and firm-level and market information as covariates,

provides useful insights into heterogeneity among different raters and into determinants of such credit

ratings.

To motivate this study we focus on a data set of US corporates over the period 2000–2013 for

which at least one corporate credit rating from the big three CRAs is available. For this purpose

we propose the use of multivariate ordered probit and logit regression models. The proposed models

incorporate non-standard features, such as different threshold parameters and different regression

coefficients for each outcome variable to accommodate for the different scales and methodologies of

the CRAs. Observations missing completely at random will also be handled by the model, as not all

firms are rated by all CRAs at the same point in time. Aside from the inferred relationship between

the outcomes and various relevant covariates based on the regression coefficients, multivariate ordinal

regression models allow inference on the agreement between the different raters. Using the latent
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variable specification, where each ordinal variable represents a discretized version of an underlying

latent continuous random variable, association can be measured by the correlation between these

latent variables. The complexity of the model can further be increased by letting the correlation

parameters further depend on covariates. In our application we only consider business sectors as

relevant covariates for the correlation structure.

Estimation of the multivariate ordered probit and logit models is performed using composite like-

lihood methods. These methods reduce the computational burden by replacing the full likelihood by

a product of lower-dimensional component likelihoods. For the logit link we employ the multivariate

logistic distribution of O’Brien and Dunson (2004), which is approximated by multivariate t distri-

bution with marginal logistic distributions. The use of the multivariate t distribution allows for a

flexible correlation matrix.

While multivariate linear models have been extensively researched and applied, multivariate mod-

eling of discrete or ordinal outcomes is more difficult, owing to the lack of analytical tractability and

computational convenience. However, many advances have been made in the last two decades. An

overview of statistical modeling of ordinal data is provided by Greene and Hensher (2010) and Agresti

(2010). The main approaches to formulate multivariate ordinal models include: (i) modeling the mean

levels and the association between responses at a population level by specifying marginal distribu-

tions; such marginal models are estimated using generalized estimating equations. (ii) Under the

latent variable specification, joint distribution functions are assumed for the latent variables under-

lying the ordinal outcomes. Estimation of multivariate ordinal models in the presence of covariates

can be performed using Bayesian and frequentist techniques. Chib and Greenberg (1998) and Chen

and Dey (2000) were among the first to perform a fully Bayesian analysis of multivariate binary and

ordinal outcomes, respectively, and to develop several Metropolis Hastings algorithms to simulate the

posterior distributions of the parameters of interest. Difficulties in Bayesian inference arise due to

the fact that absolute scale is not identifiable in ordinal models. In this case, the covariance matrix of

the multiple outcomes is often restricted to be a correlation matrix which makes the sampling of the

correlation parameters non-standard. Moreover, threshold parameters are typically highly correlated

with the latent responses. Bayesian semi- or non-parametric techniques can be employed if normality

of the latent variables is assumed to be a too restrictive assumption (e.g., Kim and Ratchford, 2013;

DeYoreo and Kottas, 2014). Nonetheless, research into these techniques is still on-going.

Frequentist estimation techniques include maximum likelihood (e.g., Scott and Kanaroglou, 2002;

Nooraee et al., 2016), which is usually feasible for a small number of outcomes. If the multivariate

model for the latent outcomes is formulated as a mixed effects model with correlated random effects,

Laplace or Gauss-Hermite approximations, as well as EM algorithms can be applied. EM algorithms

treat the random effects as missing observations can be employed to estimate the model parameters

(Grigorova et al. 2013 extended the EM algorithm for the univariate case of Kawakatsu and Largey

2009 to the multivariate case). However, we experienced convergence problems in our application.

Alternatively, estimation using maximum simulated likelihood has been proposed (e.g., Bhat and

Srinivasan, 2005), which uses (quasi) Monte Carlo methods to approximate the integrals in the

likelihood function. This method has been reported to be unstable and to suffer from convergence
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issues as the dimension of the outcomes increases (a simulation study is provided by Bhat et al.,

2010). An estimation method which has managed to overcome most of the difficulties faced by other

techniques is the composite likelihood method, which can easily be employed for higher number of

ordinal outcomes measured on a cross-section (e.g., Bhat et al., 2010; Pagui et al., 2015). In addition,

the composite likelihood estimator has satisfactory asymptotic properties (a comprehensive overview

on the theory, efficiency and robustness of this estimator is provided by Varin et al., 2011).

This paper is organized as follows: Section 2 provides an overview of multivariate ordinal re-

gression models, including model formulation, link functions and identifiability issues. Estimation

is discussed in Section 3. In Section 4 we set-up an extensive simulation study and investigate how

different aspects and characteristics of the data influence the accuracy of the estimates. The multiple

credit ratings data set is analyzed in Section 5. Section 6 concludes.

2 Model

Several models can be employed for ordinal data analysis with cumulative link models being the most

popular ones. A cumulative link model can be motivated by assuming that the observed ordinal

variable Y is a coarser (categorized) version of a latent continuous variable Ỹ .

Suppose one has a (possibly unbalanced) panel of firms observed repeatedly over T years with a

total of n firm-year observations. Moreover, suppose each firm h in year t is assigned a rating on

an ordinal scale by CRAs indexed by j ∈ Jht, where Jht is a non-empty subset from the set of all

J available raters1. The number of available outcomes for firm h in year t is given by qht. Let Yhtj

denote the rating assigned by rater j to firm h in year t. The observable categorical outcome Yhtj

with Kj possible ordered categories and the unobservable latent variable Ỹhtj are connected by:

Yhtj = rhtj if θj,rhtj−1 < Ỹhtj ≤ θj,rhtj
, rhtj ∈ {1, . . . ,Kj},

where θj,· is a vector of suitable threshold parameters for outcome j with the following restriction:

−∞ ≡ θj,0 < θj,1 < · · · < θj,Kj
≡ ∞. We allow the thresholds to vary across outcomes to account

for differences in the rating behavior of each rater.

Given an n × p covariate matrix X, where each row xht is a p-dimensional vector of covariates

for firm h in year t, we assume the following linear model:

Ỹhtj = β0j + αtj + x>htβj + εhtj , [εhtj ]j∈Jht
= εht ∼ Fht,qht

, (1)

where β0j is a constant term, αtj is an intercept for year t and rater j, βj is a vector of slope

coefficients corresponding to outcome j2 and εhtj is a mean zero error term distributed according

to a qht-dimensional distribution function Fht,qht
. In the case of observations missing completely at

random (qht < J), Fht,qht
is the marginal distribution corresponding to the distribution function of

the errors in case all J ratings had been observed.

1For example, if firm h in year t is rated by raters one and three out of a total of three raters (J = 3), one has the

set Jht = {1, 3}.
2Note that this setting easily accommodates the use of different covariates for each outcome, by restricting a-priori

some of the slope coefficients to zero.
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The year intercepts should capture stringency or loosening of the rating standards of each CRA

relative to a baseline year, in our case the first year in the sample (like in Blume et al., 1998; Alp,

2013; Baghai et al., 2014). The different βj ’s are able to account for heterogeneity in the rating

methodology of the raters. We assume that errors are independent across firms and years with

distribution function Fht,qht
and orthogonal to the covariates. Longitudinal correlation structures in

the errors, like an auto-regressive model of order one, could capture the effect of the business cycle

on the creditworthiness of a firm. We, however, do not incorporate such structure into the errors,

motivated by the practice of the CRAs of rating “through the cycle” i.e., the ratings should not

respond to temporary fluctuations in credit quality caused by economic cycle effects (Puccia et al.,

2013).

In order to simplify notation, the n × (T − 1) matrix of year dummies D will be incorporated

together with the covariates into a new matrix X̃ = (D X) and the vector β̃j = (α>j ,β
>
j )> will

contain the T − 1 year intercepts αj and the vector of slope coefficients βj . Using this notation,

the index ht for each firm-year observation is replaced by i = {1, . . . , n}, and we call each firm-year

observation hereafter a subject. Thus, model (1) becomes:

Ỹij = β0j + x̃>i β̃j + εij , [εij ]j∈Ji = εi ∼ Fi,qi . (2)

Link functions The distribution functions we consider for the error terms are the multivariate

normal and logistic distributions, where the corresponding models for the observed variable Yij are

the cumulative probit and the cumulative logit link models.

The probit link arises if the error terms in model (1) are assumed to follow a multivariate normal

distribution: εi ∼MVNqi(0,Σi). In defining a multivariate logistic distribution, we follow the lines

of O’Brien and Dunson (2004), who proposed an approximate multivariate logistic density, which

they employ for performing posterior inference in a Bayesian multivariate logistic regression. Their

approach has been adopted by Nooraee et al. (2016) in a frequentist setting, who use maximum like-

lihood for estimating a multivariate ordinal model for longitudinal data. The proposed multivariate

logistic density with location µ and covariance Σ for J dimensions is:

LJ(z|µ,Σ) = TJ,ν(t|0,R)

J∏
j=1

L(zj |µj , sj)
Tν(tj |0, 1)

, (3)

where [s2j ]j∈{1,...,J} are the diagonal elements of Σ,R is the correlation matrix corresponding to Σ and

tj = T−1ν (exp((zj−µj)/sj)/(1+exp((zj−µj)/sj))) with T−1ν being the inverse univariate standard t

distribution function with ν degrees of freedom; TJ,ν(·|µ,Σ) denotes the multivariate t density with

ν degrees of freedom, location µ and covariance Σ, L(·|µ, s) denotes the univariate logistic density

with location µ and scale s and Tν(·|µ, σ) denotes the univariate t density with location µ, scale σ

and ν degrees of freedom. As previously shown by Albert and Chib (1993), the univariate logistic

density with location parameter µ and scale s is well approximated by a t distribution. The two

densities are approximately equivalent when setting σ2 = σ̃2 ≡ s2π2(ν − 2)/3ν and ν = ν̃ ≡ 8 (cf.

Nooraee et al., 2016). The same property holds for the proposed multivariate density such that

LJ(·|µ,Σ) ≈ TJ,ν̃
(
·|µ, π

2(ν̃−2)
3ν̃ Σ

)
.
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Gumbel (1961) was the first to propose a bivariate logistic distribution which was later extended

to the multivariate case by Malik and Abraham (1973). This multivariate distribution has only

one parameter to represent the dependence between all outcomes. The main advantages of using

the multivariate logistic distribution in Equation (3) are i) it allows for a flexible unconstrained

correlation structure between the underlying latent variables Ỹ and ii) the regression coefficients can

be interpreted in terms of log odds ratios.

Identifiability It is well known that in ordinal models the absolute location and the absolute scale

of the underlying latent variable are not identifiable (see for example Chib and Greenberg, 1998).

Assuming that Σi is the full covariance matrix of the errors εi with diagonal elements [σ2
ij ]j∈Ji , in

model (2) only the quantities β̃j/σij and (θj,rij−β0j)/σij are identifiable. As such, typical constraints

on the parameters are, for all j:

� fixing β0j (e.g., to zero), using flexible thresholds θj,· and fixing σij (e.g., to unity);

� leaving β0j unrestricted, fixing one threshold parameter (e.g., θj,1 = 0), fixing σij (e.g., to

unity);

� leaving β0j unrestricted, fixing two threshold parameters (e.g., θj,1 = 0 and θj,Kj−1 = 1),

leaving σij unrestricted.

Alternatively, if the ordered responses are mirrored or symmetrically labeled, one can assume sym-

metric thresholds around zero such that the length of intervals for symmetrically labeled responses

are the same. In this case, scale invariance can be achieved by fixing the length of one interval to an

arbitrary number.

In this paper we fix the intercept terms (β0j)j∈{1,...,J} to zero and the variance of the errors to

unity, such that Σi = Ri becomes a correlation matrix. Moreover, in the parametric model we

assume a sector specific correlation structure for the errors Rg(i), where g(i) denotes the business

sector of firm-year i. In other words, the correlation structure does not vary across subjects within

the same business sector. In the presence of missing observations, Ri,g(i) the sub-matrix of Rg(i)

denotes the correlation matrix corresponding to the underlying variables generating the observed

outcomes Yi = [Yij ]j∈Ji and is obtained by choosing the elements of Rg(i) corresponding to the

available ratings (i.e., which lie in rows Ji and columns Ji).

3 Estimation

Let Γ denote the vector containing the threshold parameters, the regression coefficients, and the

elements of the matrices Rg(i) to be estimated. The likelihood of the model is then given by the

product:

L (Γ|X̃, Y ) =

n∏
i=1

P(∩j∈JiYij = rij |Γ, X̃)wi =

n∏
i=1

(∫
Di

fqi(Ỹi|Γ, X̃)dqiỸi

)wi

,
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where Di =
∏
j∈Ji(θj,rij−1, θj,rij ] is a Cartesian product, wi are non-negative weights, which in the

simplest case are set to one, and fi,qi is the qi-dimensional density corresponding to the distribution

function Fi,qi .

In order to estimate the model parameters we use a composite likelihood approach, where the full

likelihood is approximated by a pseudo-likelihood which will be constructed from lower dimensional

marginal distributions, more specifically by “aggregating” the likelihoods corresponding to pairs and

triplets of observations, respectively. In the presence of observations missing completely at random,

the composite likelihood will be constructed from the available outcomes for each firm-year i. If the

number of outcomes qi is less than two for the pairwise approach or three for the tripletwise approach,

the marginal qi-dimensional marginal probabilities are used. For the sake of notation we introduce

an n× J binary index matrix Z, where each element zij takes a value of 1 if j ∈ Ji and 0 otherwise.

The pairwise log-likelihood is given by:

c`(Γ|X̃, Y ) =

n∑
i=1

wi

[
J−1∑
k=1

J∑
l=k+1

1{zikzil=1} log
(
P(Yik = rik, Yil = ril|Γ, X̃)

)
+

1{qi=1}

J∑
k=1

1{zik=1} log
(
P(Yik = rik, |Γ, X̃)

)]
. (4)

Similarly, the tripletwise log-likelihood is:

c`(Γ|X̃, Y ) =

n∑
i=1

wi

[
J−2∑
k=1

J−1∑
l=k+1

J∑
m=l+1

1{zikzilzim=1} log
(
P(Yik = rik, Yil = ril, Yim = rim|Γ, X̃)

)
+

1{qi=2}

J−1∑
k=1

J∑
l=k+1

1{zikzil=1} log
(
P(Yik = rik, Yil = ril|Γ, X̃)

)
+

1{qi=1}

J∑
k=1

1{zik=1} log
(
P(Yik = rik, |Γ, X̃)

)]
. (5)

If, for the case of no missing observations, the errors follow a J-dimensional multivariate normal or

multivariate logistic distribution, the lower dimensional marginal distributions Fi,qi are also normally

or logistically distributed. In the sequel we denote by fi,1, fi,2 and fi,3 the uni-, bi- and trivariate

densities corresponding to Fi,1, Fi,2 and Fi,3. Hence, the marginal probabilities can be expressed as:

P(Yik = rik, Yil = ril, Yim = rim|·) =

Uik∫
Lik

Uil∫
Lil

Uim∫
Lim

fi,3(vik, vil, vim|·)dvikdvildvim,

P(Yik = rik, Yil = ril|·) =

∫ Uik

Lik

∫ Uil

Lil

fi,2(vik, vil|·)dvikdvil,

P(Yik = rik|·) =

∫ Uik

Lik

fi,1(vik)dvik,

where Uij = θj,rij − x̃>i β̃j denote the upper and Lij = θj,rij−1− x̃>i β̃j the lower integration bounds.

Point maximum composite likelihood estimates Γ̂CL are obtained by direct maximization using

general purpose optimizers. In order to quantify the uncertainty of the maximum composite likelihood

estimates, numerical differentiation techniques are used to compute the standard errors. Under

certain regularity conditions, the maximum composite likelihood estimator is consistent as n → ∞
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and J fixed and asymptotically normal with asymptotic mean Γ and covariance matrix:

G(Γ)−1 = H−1(Γ)V (Γ)H−1(Γ),

where G(Γ) denotes the Godambe information matrix, H(Γ) is the Hessian (sensitivity matrix) and

V (Γ) is the variability matrix (Varin, 2008). The sample estimates of H(Γ) and V (Γ) are given by:

V̂ (Γ) =
1

n

n∑
i=1

∂c`i(Γ̂CL|Yi)
∂Γ

(
∂c`i(Γ̂CL|Yi)

∂Γ

)>
, Ĥ(Γ) = − 1

n

n∑
i=1

∂2c`i(Γ̂CL|Yi)
∂Γ∂Γ>

,

where c`i(Γ|Yi) denotes the i-th component of the composite log-likelihood. For model compar-

ison the composite likelihood information criterion can be used: CLIC(Γ) = −2 c`(Γ̂CL|X,Y ) +

k tr(V̂ (Γ)Ĥ(Γ)−1) (where k = 2 corresponds to CLIC-AIC and k = log(n) corresponds to CLIC-

BIC).

To achieve monotonicity in the threshold parameters θj,· we set θj,1 = γj,1 and θj,r = θj,r−1 +

exp(γj,r) for r = 2, . . . ,Kj − 1, and estimate the vector of unconstrained parameters [γj,·]j∈{1,...,J}.

For all correlation matrices we use the spherical parametrization described in Pinheiro and Bates

(1996) and transform the constrained parameter space into an unconstrained one. The spherical

parametrization for covariance matrices has the advantage over other parametrizations in that it can

easily be modified to apply to a correlation matrix.

4 Simulation Study

The aim of the simulation study is to investigate the following aspects: First, in order to assess how

the sample size n influences the accuracy of the pairwise likelihood estimates, we simulate data sets

with different numbers of observations and plot the mean squared errors of the estimates. Second,

we investigate how the bias and the variance of the composite likelihood estimates changes when

using the pairwise versus the tripletwise likelihood for both the probit and the logit links. Finally,

motivated by the high number of incomplete outcomes in the credit ratings data set, we explore the

performance of the pairwise likelihood in the presence of observations missing completely at random

for three and five outcome variables. In addition, we include six groups of observations with different

correlation patterns, which in the application case would correspond to business sectors.

For the probit link we simulate the error terms from the multivariate normal distribution. In order

to simulate errors from the multivariate logistic distribution defined in Equation (3), we generate

samples uniformly distributed on the [0, 1] interval from the t copula (ui1, . . . uiqi). In order to obtain

marginally logistic distributed errors εij we use the transformation εij = L−1(uij) where L−1(x)

denotes the inverse univariate logistic distribution function.

In all settings, we work with three covariates for each outcome, which we simulate from a standard

normal distribution and assume the vector of coefficients βj = (1.2,−0.2,−1)> for all j ∈ J out-

comes. In our simulation study with J = 3 outcome variables, we use the following set of threshold

parameters: three thresholds for the first outcome θ1 = (−1, 0, 1)>, three thresholds for outcome

two θ2 = (−2, 0, 2)> and five thresholds for the third outcome θ3 = (−1.5,−0.5, 0, 0.5, 1.5)>. The
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underlying error terms are assumed to have different degrees of correlation. More details are provided

for each simulation exercise in the following subsections.

In the simulation study, we follow Bhat et al. (2010) and proceed in the following way:

1. Simulate S data sets with n subjects, where each subject i has J outcome variables.

2. Estimate the composite likelihood parameters for each data set and compute the mean estimate

for all parameters.

3. Estimate the asymptotic standard errors using the Godambe information matrix for each data

set and compute the mean3 for all parameters.

4. Compute bias and absolute percentage bias (APB)4:

APB =

∣∣∣∣ true parameter − mean estimate

true parameter

∣∣∣∣ .
5. Compute the finite sample error through calculating the standard deviation across all S data

sets for each parameter.

6. Calculate a relative efficiency measure of estimator 2 compared to estimator 1

RE =
se1
se2

.

for both, the asymptotic as well as the finite sample standard errors.

4.1 Investigating the effect of the sample size on the pairwise likelihood

estimates

In this part we investigate the influence of the number of subjects n on the pairwise likelihood

estimates for both the probit and the logit link. For this purpose, we use three different correlation

structures and simulate for each correlation pattern S = 100 data sets for increasing number of

subjects n. We use a high correlation (R1; solid line), a moderate correlation (R2; dashed line) and

a low correlation matrix (R3; dotted line). The correlation matrices can be found in Subsection 4.3.

In Figure 1 average mean squared errors (MSE) are plotted against the number of subjects n. The

average MSEs of the threshold parameters as well as the coefficients show, as expected, no difference

between the data sets simulated with different correlation structures. Conversely, the MSEs of the

correlation parameters differ across different degrees of correlation. We observe that correlation

parameters of the high correlation data sets are recovered better compared to the moderate and

low correlation ones. This finding has been previously reported also by e.g., Bhat et al. (2010) in

their simulation study for the multivariate probit model. The last plot shows the average MSEs of

all estimated parameters indicating that from n = 500 subjects the MSE curves start to flatten out.

MSEs are in general low and even for smaller sample sizes (like n = 100) we obtain reasonable results.

On average the logit link MSEs are slightly higher than the ones obtained by probit link, but this

seems to not be the case for the correlation parameters.

3With one exception: In the case of the tripletwise estimates we compute the median due to instabilities in the

numerical derivatives of the trivariate normal distribution function.
4If the true parameter is zero we do not report the APB.
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Figure 1: These plots display the averaged MSEs for increasing number of subjects n for the probit

link (blue) and the logit link (green).

We decide to proceed in the sequel of the paper with n = 1000 subjects per group, also motivated

by the application case where the smallest business sector contains around 1000 subjects.

4.2 Comparison pairwise vs. tripletwise likelihood

In order to compare pairwise and tripletwise likelihood estimators we simulate S = 1000 data sets

with n = 1000 subjects and three outcome variables (J = 3). Table B.1 (probit link) and Table B.2

(logit link) present a comparison between the pairwise and tripletwise likelihood (which for J = 3

represents the full likelihood) estimates. For each link, both approaches seem to recover all parameters

very well. For the probit link, comparing the APB of the two estimation approaches yields a range

from 0.05% to 0.93% for the pairwise and a range from 0.00% to 0.89% for the tripletwise (or full)

likelihood approach. In this case, the relative efficiency of the tripletwise estimators to the pairwise

estimators is close to one for asymptotic as well as finite sample standard errors.

For the logit link the APB ranges from 0.04% to 2.15% for the pairwise approach and from 0.02%

to 2.08% for the tripletwise approach. The relative efficiency measure is again close to one. For
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both link functions the asymptotic standard errors are close to the finite sample standard errors.

For the logit link the standard errors of the threshold and coefficient parameters are higher than for

the probit link, while for the correlation parameters this difference disappears. An inspection of the

QQ-plots for the pairwise and tripletwise parameter estimates reveals that the empirical distribution

of the S = 1000 estimates is well approximated by a normal distribution.

According to the results, there seems to be no substantial improvement in the parameter estimates

when using the tripletwise approach. In terms of computing time, the pairwise likelihood approach

(on average 263.68 seconds per data set) outperforms the tripletwise likelihood approach (on average

935.54 seconds per data set) by a factor of 3.5. Computations have been performed on 25 IBM

dx360M3 nodes within a cluster of workstations.

In addition, when moving from two to three dimensions estimating the asymptotic standard errors

can be problematic. This is because the numerical computation of the gradient and Hessian of the

objective function highly depends on the algorithm used for computing the multivariate normal or t

probabilities, which again delivers an approximation and must rely on deterministic methods (other-

wise the derivatives do not exist). According to our simulations, for two dimensions the procedure

is stable, but in more than two dimensions it can lead to numerical instabilities. Given the similar

performance, computing time and stability of the numerical estimation of the standard errors, we

decide to use the pairwise likelihood approach for the analysis of the multiple credit ratings data set

in Section 5.

4.3 Simulation study with three outcomes and six different sector corre-

lations

In this subsection we analyze the performance of the pairwise likelihood approach in the presence of

missing observations for three outcome variables. We simulate S = 1000 data sets with n = 6000

subjects, where each subject i has three outcome variables (J = 3) yielding in total 18000 observa-

tions in the outcome variables. We allow for 6 different sectors with each ns = 1000 subjects and

choose two high correlation, two moderate correlation and two low correlation matrices:

R1 =


1.0 0.8 0.7

0.8 1.0 0.9

0.7 0.9 1.0

 ,

R4 =


1.0 0.9 0.9

0.9 1.0 0.9

0.9 0.9 1.0

 ,

R2 =


1.0 0.5 0.3

0.5 1.0 0.4

0.3 0.4 1.0

 ,

R5 =


1.0 0.8 0.3

0.8 1.0 0.6

0.3 0.6 1.0

 ,

R3 =


1.0 0.2 0.3

0.2 1.0 0.1

0.3 0.1 1.0

 ,

R6 =


1.0 0.1 0.1

0.1 1.0 0.1

0.1 0.1 1.0

 .

For the probit link, Table B.3 presents the parameter estimates of both the full observations model

and the model containing missing observations. The results for the logit link are displayed in the

Table B.4.
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Full observations model In the full observations model we observe excellent estimates for all

parameters. In particular for the probit link, the threshold parameters and coefficients are recovered

very well. The APB ranges from 0.04% to 0.30%. In the case of correlation parameters we observe

that high correlation parameters are recovered extremely well (APB between 0.01% and 0.16%),

in contrast to low correlation parameters, where we observe higher APB (up to 1.90%) as well as

standard errors. Even though the model performs better for high correlation structures, we can

conclude that pairwise likelihood estimates are very good for different correlation patterns. In the

presence of the logit link we observe slightly worse regression coefficient (APB from 0.58% to 2.53%)

and threshold estimates (APB from 0.32% to 0.67%), but slightly better estimates for low and

moderate correlations (APB from 0.01% to 1.13%) compared to the probit link.

Missing observations model We repeated the simulation this time with observations missing

completely at random in the outcome variables of the simulated data sets. We randomly remove 5%

of the first outcome variable, 20% of the second outcome and 50% of the third outcome. Overall

for both link functions, all parameter estimates are recovered very well in the missing observation

model. In analogy to the full observations model with probit link, the threshold and coefficient

parameters have an APB ranging from 0.03% to 0.36%. High correlation parameters (APB from

0.03% to 0.19%) are recovered better compared to low correlation parameters (APB up to 2.83%).

In addition, standard errors increase for all parameters with the number of missing observations. In

the logit model with missing observations, the threshold and coefficient parameters as well as the

high correlation parameters are recovered very well, in contrast to low correlation parameters, where

we observe that missing observations have an impact on the quality of the estimates (ABP increases

up to 6.35%).

Full observations model vs. Missing observations model First, we compare the parameter

estimates of the full and the missing observations model with probit link. As expected, we observe

smaller APB and standard errors for almost all parameters in the full model. In case of threshold

parameters and coefficients, we do not observe a big difference in the pairwise likelihood estimates.

While large correlation parameters are recovered very well in both models, we observe a significant

impact of missing observations on the estimation quality of low correlation parameters (e.g. APB

increases from 1.90% to 2.83% for parameter ρ323).

Nevertheless, even if we omit 50% of the observations of one particular outcome variable, all

parameter estimates remain very good as long as the number of remaining observations is not too low.

In terms of relative efficiency our measure yields approximately 0.9 for most parameters corresponding

to the outcome with 5% missing observations, approximately 0.85 for parameters corresponding to

outcome two (20% missing observations) and approximately 0.7 for parameters corresponding to the

third outcome with 50% of missing observations. Moreover, a comparison for the logit link models

shows similar aspects. For threshold as well as coefficient estimates, the estimation quality does not

suffer strongly in the presence of missing observations. The quality of the correlation parameters is

only affected in dimensions with a lot of missings and low correlation (e.g., correlation parameters

12



between the second and third outcome). In such a case, the maximal APB increases from 2.49%

up to 6.35%. In summary, we are confident that, even though one has to deal with outcomes with

high percentage of missing values, the pairwise likelihood estimates can still recover the parameters

of interest in a reliable way.

Simulation study with five outcomes In addition, a simulation study with J = 5 outcomes

is conducted. Again, pairwise likelihood estimates of a full observations model and a model with

outcomes containing up to 70% missing observations are estimated. The findings are similar to the

ones of the three dimensional simulation study and we observe that all parameters are recovered very

well in models with a higher number of outcomes. More information can be found in Appendix A.

5 Multivariate Analysis of Credit Ratings

We base our empirical analysis on a data set of US firms rated by S&P, Moody’s and Fitch over the

period 2000–2013. We chose this time frame as Fitch became an established player in the US ratings

market around year 2000 (Becker and Milbourn, 2011).

5.1 Data

We collect historical long-term issuer credit ratings from S&P, Moody’s and Fitch, the three biggest

CRAs in the US market. S&P domestic long-term issuer credit ratings are retrieved from the S&P

Capital IQ’s Compustat North America© Ratings file, while issuer credit ratings from Moody’s and

Fitch were provided by the CRAs themselves. The CRAs assign ratings on an ordinal scale. S&P

and Fitch assign issuers to 21 non-default categories5. Moody’s rating system for issuers comprises

20 non-default rating classes and uses different labeling6, where AAA and Aaa, respectively represent

the highest credit quality and hence lowest default risk. Firms falling into the best ten categories

(AAA/Aaa to BBB−/Baa3) are considered investment grade (IG) firms, while those falling into

BB+/Ba1 to C/Ca are speculative grade (SG) firms.

In order to build the covariates, annual financial statement data and daily stock prices from the

Center of Research in Security Prices (CRSP) are downloaded for the S&P Capital IQ’s Compu-

stat North America© universe of publicly traded US companies. Following the existing literature

(e.g., Shumway, 2001; Campbell et al., 2008; Alp, 2013) and the rating methodology published by

the CRAs (Puccia et al., 2013; Tennant et al., 2007; Hunter et al., 2014), we build the following

covariates: free operating cash-flow coverage ratio ([operating cash-flow − capital expenditures +

interest expenses]/interest expenses), cash/assets, tangibility (fixed assets/assets), debt/assets, short-

term debt/debt, retained earnings/assets, return on capital (earnings before interest and taxes/equity

and debt), earnings before interest and taxes/sales, research and development expenses (R&D)/assets

and capital expenditures/assets. In addition, we use daily stock prices to compute the following mea-

sures: relative size (RSIZE) is the logarithm of the ratio of market value of equity (computed as the

5AAA, AA+, AA, AA−, A+, A, A−, BBB+, BBB, BBB−, BB+, BB, BB−, B+, B, B−, CCC+, CCC,

CCC−, CC and C.
6Aaa, Aa1, Aa2, Aa3, A1, A2, A3, Baa1, Baa2, Baa3, Ba1, Ba2, Ba3, B1, B2, B3, Caa1, Caa2, Caa3, Ca
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Table 1: This table displays in the diagonal the number of ratings from the three CRAs in our data

set from 2000 to 2013. The off-diagonal displays the number of co-rated firms.

S&P Moody’s Fitch

S&P 19874 12270 4173

Moody’s 13168 3749

Fitch 4365

average stock price in the year previous to the observation times the number of shares outstanding)

to the average value of the CRSP value weighted index. BETA is a measure of systematic risk, which

represents the relative volatility of a stock price compared to the overall market. SIGMA is a measure

of idiosyncratic risk. We regress the daily stock price in the year before the observation on the daily

CRSP value weighted index. BETA is the regression coefficient and SIGMA is the standard deviation

of the residuals of this regression. The last measure is the market assets to book assets ratio (MB)

which is market equity plus book liabilities divided by book assets.

We follow standard practice in the literature and remove financials (GICS code 40) and utilities

(GICS code 55) from the sample, as these firms have a special regime of reporting their annual figures

and this fact might distort the results. We match the ratings data with financial statement data from

Compustat using CUSIPs. To ensure that these data are observable to the rating agencies at the

time the rating is issued, we match each rating with financial statement data lagged by three months.

We choose the three months lag, as all publicly traded US companies must file their annual reports

with the Securities and Exchange Commission within 90 days of the fiscal year end.

The merged sample consists of 20880 firm-year observations and 2876 companies for which at least

one rating is available. Table 1 shows the number of non-missing ratings and co-ratings between the

CRAs. S&P rates 95%, Moody’s 63% and Fitch only 21% of the firm-year observations in the sample.

Only 3665 firm-years (18%) have a rating from all three CRAs. Figure 2 shows the distributions of the

ratings for each CRA. For further analysis we aggregate the “+” and “−” ratings for S&P and Fitch

and the “1” and “3” ratings for Moody’s to the middle rating. Moreover, following the practice of the

CRAs in their report series, we aggregate classes CCC to C for S&P and Fitch. The distribution of

the ratings using the aggregated scale is presented in Figure 3.

We winsorize all variables at the 97.5% quantile and additionally the variables which can take

negative values at the 2.5% quantile. Missing values in the ratios are replaced by the sectorwise

median in each year. Given the different scale of the covariates we standardize them to have mean

zero and variance equal to one.

In order to perform a sectorwise correlation analysis, firms are classified into business sectors ac-

cording to the Global Industry Classification Standard (GICS). We use eight sectors in the analysis:

energy (GICS code 10, 2617 observations), materials (GICS code 15, 2482 observations), industri-

als (GICS code 20, 3631 observations), consumer discretionary (GICS code 25, 5176 observations),

consumer staples (GICS code 30, 1646 observations), health care (GICS code 35, 1955 observations),

information technology (GICS code 45, 2194 observations) and telecommunication services (GICS
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Figure 2: This figure displays the distribution of ratings in the original scale containing 21 rating

classes.
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code 50, 1179 observations).

5.2 Results

Model (1) is fitted to the ratings data set. The latent variable motivation in ordinal models is an

intuitive setting for the application case. In the context of credit risk one may think of the underlying

latent variable as the latent creditworthiness of a firm, which is measured on a continuous scale. In the

literature, this latent variable has been introduced under different names and in different settings. For

example, Altman (1968) introduced the Z-score, a linear combination of multiple accounting ratios,

as a measure to predict corporate defaults. Furthermore, in his seminal work, Merton (1974) proxies

creditworthiness by the distance-to-default, which measures the distance of the firm’s log asset value

to its default threshold on the real line. Ratings can then be considered as a coarser version of this

latent variable. Low values of the latent creditworthiness will translate to the worst rating classes,

while the right tail of the distribution of the latent variables will correspond to the best rating classes.

We use both the probit and the logit links in the estimation of the model. The CLIC-BIC for

the model using the logit link is slightly lower (91920.3) than the CLIC-BIC for the probit model

(94089.4). We therefore proceed in the following only with the discussion of the results using the logit

link. The results of the multivariate probit model can be found Tables B.5 and B.6 in Appendix. No

notable differences occur. As expected, the threshold and regression coefficients for the logit model

are larger than the ones of the probit model by a factor of approximately
√
π2/3.

It is to be noted that the estimated thresholds and coefficients represent signal to noise ratios

due to identifiability constraints and one needs to proceed with care when interpreting the results.

Nonetheless, the results provide several interesting insights.

Threshold parameters The estimated threshold parameters together with their standard errors

for the multivariate logit model are presented in Table 2. Moody’s seems to be the most conservative

rater, with almost all threshold parameters higher than the other two CRAs. While for the investment

grade classes the difference between S&P and Moody’s thresholds is relatively small, this is not the

case for the speculative grade rating classes, where Moody’s seems to distance itself from S&P in the

way it assigns ratings and tends to be more conservative. Fitch on the other hand has significantly

lower threshold parameters BBB|A and BB|BBB than S&P, which could translate into a more

optimistic rating scale around the investment–speculative grade frontier.

Regression coefficients Table 3 presents the regression coefficients. Firms with higher free oper-

ating cash-flow coverage ratios, more tangible assets, higher proportion of short-term debt (which is

less risky than long-term debt), high profitability (measured by retained earnings to assets, return

on capital or EBIT/sales), which spend more on R&D and have a bigger size tend to get better

ratings. On the other hand, firms with higher debt ratios, capital expenditures, idiosyncratic and

systematic risk tend to get worse credit ratings. Moreover, high liquidity levels are inversely related

to creditworthiness which is rather counter intuitive. This is in line with previous results and can

be explained by the fact that a conservative cash policy is more likely to be pursued by a firm that
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Table 2: This table displays the threshold parameter estimates from the multivariate ordered logit

model using the multiple corporate credit ratings data set.

S&P Fitch Moody’s

Thresholds Est. SE Est. SE Thresholds Est. SE

Ca|Caa −8.2069 0.1585

CCC/C|B −6.7774 0.1004 −6.1065 0.1902 Caa|B −4.9643 0.0882

B|BB −2.6980 0.0655 −2.9145 0.1181 B|Ba −1.8586 0.0677

BB|BBB −0.5638 0.0632 −0.9771 0.1084 Ba|Baa −0.4358 0.0671

BBB|A 1.8639 0.0666 1.4639 0.1096 Baa|A 2.0049 0.0710

A|AA 4.5183 0.0821 4.3426 0.1275 A|Aa 4.7073 0.0911

AA|AAA 6.6068 0.1228 6.8602 0.2050 Aa|Aaa 6.8622 0.1419

Table 3: This table displays the regression coefficients from the multivariate ordered logit model

using the multiple corporate credit ratings data set.

S&P Moody’s Fitch

Covariate Est. SE Est. SE Est. SE

operating CF cov. 0.0888 0.0224 0.1139 0.0242 0.0793 0.0317

cash/assets −0.1170 0.0176 −0.1025 0.0188 −0.1463 0.0245

tangibility 0.2674 0.0207 0.3043 0.0228 0.2229 0.0288

debt/assets −0.6988 0.0236 −0.6495 0.0258 −0.8313 0.0375

ST debt/debt 0.2085 0.0199 0.2440 0.0225 0.2509 0.0296

ret.earnings/assets 0.7554 0.0232 0.7402 0.0262 0.6711 0.0317

return on capital 0.3403 0.0228 0.3592 0.0246 0.3591 0.0317

EBIT/sales 0.2146 0.0202 0.1975 0.0206 0.2167 0.0258

R&D/assets 0.2737 0.0177 0.2544 0.0191 0.2790 0.0242

capex/assets −0.1325 0.0208 −0.1715 0.0226 −0.0840 0.0328

RSIZE 0.9399 0.0221 1.0191 0.0246 0.8234 0.0304

BETA −0.2069 0.0178 −0.1772 0.0189 −0.2165 0.0252

SIGMA −0.6476 0.0288 −0.6086 0.0311 −0.5940 0.0458

MB −0.2275 0.0203 −0.1997 0.0233 −0.1130 0.0299

finds itself close to distress and that higher cash holdings increase the long-term probability of default

(e.g., Acharya et al., 2012; Alp, 2013). The market-to-book ratio (MB) is also inversely related to

creditworthiness. This has also been found by Campbell et al. (2008), who argue that high MB ratio

can point towards overvaluation of the firm in the market, which in turn can be a bad sign in terms

of credit quality.
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Figure 4: This figure displays the time dummy coefficients from 2000 to 2013 from the multivariate

ordered logit model.

Year intercepts As previously mentioned, using the logit link has the advantage that the regression

coefficients can be interpreted as marginal log odds ratios. For the year intercepts, this means that,

for each year t and rater j, the odds of Y ≥ r against Y < r (i.e., the odds of a firm being assigned

to rating class r or better rather than in a worse class than r, for all r) are exp(αtj) times the odds

in 2000 (which is the baseline year), ceteris paribus. Figure 4 shows these odds ratios corresponding

to the coefficients of the year dummies for each rating agency. We observe that the odds ratios are

less than one for all years, which means that the odds of a firm with constant characteristics to get

a better rating decrease after 2000. This can indicate a tightening of rating standards (also found

by Alp, 2013). An interesting remark is that before the financial crisis the odds start increasing,

reaching a peak in 2008 for all CRAs, indicating a possible loosening of the rating standards in the

financial crisis. After 2008, the odds return and stabilize close to the levels before the financial crisis.

In addition, the odds of Moody’s and Fitch are nearly identical during the crisis.

Correlation parameters Figure 5 shows the estimated correlation parameters together with their

standard errors. We interpret the correlations as measures of association between the three CRAs,

even though they are often interpreted as measures of agreement. In general, we observe very high

levels of association for all business sectors. In particular, very high levels of association for all three

CRAs are identified for sectors like energy, materials, industrials and consumer staples. Other sectors

like consumer discretionary, health care, information technology or telecommunication show small
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Figure 5: This figure shows the correlation estimates from the multivariate ordered logit model for

different business sectors using the multiple corporate credit ratings data set. The standard errors

are given in parentheses.

deviations in the association levels among the CRAs and exhibit correlations under 0.9. The high

degree of correlation is good news, as it implies that firms have little incentives to engage in ratings

shopping. Ratings “shopping” emerges when CRAs do not perfectly agree on the credit quality of

a firm, as firms could exploit the disagreement by “shopping” the most favorable ratings (see for

example Cantor and Packer, 1997; Becker and Milbourn, 2011; Bongaerts et al., 2012).

6 Concluding Remarks

In this paper we consider multivariate ordinal regression models with a latent variable specification

in a credit risk context. This joint modeling approach is motivated by the case where multiple CRAs

assess a firm’s credit quality based on firm-level and market information and assign ordinal credit

ratings accordingly. Composite likelihood methods are applied to estimate the model parameters

and a simulation study is performed in order to investigate several aspects. First, we check how the

sample size affects the pairwise likelihood estimates. We find that results are reasonable already for

small sample sizes (e.g., 100 subjects) and that the MSEs flatten out for samples sizes higher than

500. For both link functions, high correlation parameters are better recovered than low correlation

parameters, even though it seems that the logit link does a slightly better job at recovering low

correlations. Second, we find that for three ordinal outcomes, using the pairwise approach has

advantages over the tripletwise (or full) likelihood approach. Even though the tripletwise approach

delivers slightly better estimates in terms of bias, the differences between the estimates are minimal

and the pairwise approach is significantly faster than the tripletwise approach. Another relevant

aspect for the application case, where the panel of credit ratings has many missing values especially
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for Fitch, is the influence of ignorable missing values on the pairwise likelihood estimates. We find that

these estimates are robust to observations missing completely at random and threshold parameters,

coefficients and high correlation parameters are all recovered very well. Low correlation dimensions

are more sensitive to missing observations but, as long as the sample size is not too small, estimates

are reliable. Additionally, a simulation study with five outcome variables was performed and similar

results as for the three-dimensional case were observed. Simulation results are satisfactory for both

the probit and the logit link functions.

In the empirical application, corporate credit ratings from S&P, Moody’s and Fitch are matched

to financial statement and stock price data for US publicly traded firms between 2000 and 2013.

Relevant covariates which have an impact on the creditworthiness of firms are chosen according to

prior literature. Moreover, we include time dummies in the analysis to capture changes in the rating

standards over time. Association between the ordinal credit ratings is reflected in the correlation

between the latent creditworthiness processes, which in our model depends on the business sector of

the firm. We allow for different threshold parameters for each CRA and observe that Moody’s tends

to have a more conservative behavior, especially in the speculative grade classes, while Fitch seems

to assign on average better ratings around the investment–speculative grade frontier. Moreover, all

covariates have the expected sign and are consistent with the existing literature. We conclude that

firms with higher debt ratio, capital expenditures, idiosyncratic and systematic risk, market to book

ratio tend to get worse credit ratings. Larger, more profitable firms, which spend more on R&D and

have high cash-flow coverage ratios, a higher proportion of tangible assets and of short-term debt tend

to obtain better ratings. The coefficients of the year dummies indicate that rating standards in the

sample period became stricter relative to the standards in 2000. This continuous “tightening” trend

after 2000 was interrupted by a “loosening” of the standards during the financial crisis 2007–2009, but

after 2010 the coefficients returned to the level before the crisis. The degree of inter-rater association

for all business sectors is very high. Marginal differences are observed for few business sectors.

Possible extensions of this work include the incorporation of multi-level dependencies, such as

time dependencies in the error terms and/or the implementation of different covariates in the error

correlation matrix. The empirical analysis could be extended to incorporate additional ratings from

smaller players in the US ratings market.

Computational details

All computations have been performed in R (R Core Team, 2017). For the computation of the bi-

and trivariate normal and t probabilities we used the R package mnormt (Azzalini and Genz, 2016).

The minimization of the negative log-likelihood has been performed by using the general purpose

optimizers implemented in the package optimx (Nash and Varadhan, 2011; Nash, 2014). After

trying all available solvers, we chose the NEWUOA solver (Powell, 2006), as it exhibited the highest

convergence speed and also converged in all the simulation exercises. The numerical derivatives have

been computed with the R package numDeriv (Gilbert and Varadhan, 2015).
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A Simulation study with five outcomes

A simulation study with J = 5 outcome variables is performed. The sets of threshold and coefficient

parameters are extended for two additional outcomes. For outcome four and five we choose the

thresholds θ4 = (−2,−1, 0, 1, 1.5)> and θ5 = −1.5,−1,−0.5, 0, 0.5, 1, 1.5)>. The following vectors

of coefficients are added: βj = (1.2,−0.2,−1)>, for j = 4, 5. We simulate S = 1000 data sets with

n = 6000 subjects. Each subject i has five outcome variables (J = 5) yielding in total 30000 obser-

vations in the outcome variables. We allow for 6 different sectors with each ns = 1000 subjects and

following correlation, matrices:

R1 =



1.0 0.8 0.7 0.9 0.8

0.8 1.0 0.8 0.8 0.7

0.7 0.8 1.0 0.7 0.8

0.9 0.8 0.7 1.0 0.9

0.8 0.7 0.8 0.9 1.0


,

R4 =



1.0 0.9 0.9 0.9 0.9

0.9 1.0 0.9 0.9 0.9

0.9 0.9 1.0 0.9 0.9

0.9 0.9 0.9 1.0 0.9

0.9 0.9 0.9 0.9 1.0


,

R2 =



1.0 0.4 0.5 0.6 0.5

0.4 1.0 0.3 0.5 0.7

0.5 0.3 1.0 0.3 0.6

0.6 0.5 0.3 1.0 0.5

0.5 0.7 0.6 0.5 1.0


,

R5 =



1.0 0.5 0.2 0.3 0.6

0.5 1.0 0.2 0.3 0.1

0.2 0.2 1.0 0.8 0.3

0.3 0.3 0.8 1.0 0.2

0.6 0.1 0.3 0.2 1.0


,

R3 =



1.0 0.1 0.2 0.3 0.2

0.1 1.0 0.2 0.3 0.1

0.2 0.2 1.0 0.1 0.3

0.3 0.3 0.1 1.0 0.2

0.2 0.1 0.3 0.2 1.0


,

R6 =



1.0 0.1 0.1 0.1 0.1

0.1 1.0 0.1 0.1 0.1

0.1 0.1 1.0 0.1 0.1

0.1 0.1 0.1 1.0 0.1

0.1 0.1 0.1 0.1 1.0


.

We randomly remove 5% of the first outcome variable, 20% of the second outcome, 50% of the

third outcome, 10% of the fourth outcome and 70% of the fifth outcome variable and repeat the

simulation.

The findings are similar to the model with three outcome variables. Unreported results show that

threshold parameters, coefficients and large correlation parameters are recovered very well for both

models. Again, only the estimates of low and moderate correlation parameters suffer in the presence

of a high percentage of missing observations. But overall, the model with five different outcome

dimension seems to deliver reliable estimates for all parameters. We can conclude that, aside from

increasing computation time, increasing number of dimensions in the outcome variables does not pose

a problem.
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B Tables

Table B.1: This table displays a comparison of pairwise and tripletwise likelihood estimates from the multivariate ordered

probit using S = 1000 simulated data sets, n = 1000 subjects and J = 3 outcomes.

Parameters Pairwise Likelihood Tripletwise Likelihood Relative Efficiency

True

Value

Mean

Estimate
Bias

Absolute

Perc.

Bias

Asympt.

Standard

Error

Finite

Sample

Standard

Error

Mean

Estimate
Bias

Absolute

Perc.

Bias

Asympt.

Standard

Error

Finite

Sample

Standard

Error

ASEfull

ASENA

FSSEfull

FSSENA

θ1,1 −1.0000 −1.0028 0.0028 0.28% 0.0580 0.0577 −1.0025 0.0025 0.25% 0.0585 0.0578 0.9911 0.9995

θ1,2 0.0000 0.0004 −0.0004 – 0.0501 0.0493 0.0003 −0.0003 – 0.0486 0.0492 1.0315 1.0031

θ1,3 1.0000 1.0031 −0.0031 0.31% 0.0580 0.0573 1.0029 −0.0029 0.29% 0.0601 0.0572 0.9652 1.0032

θ2,1 −2.0000 −2.0111 0.0111 0.55% 0.0814 0.0825 −2.0102 0.0102 0.51% 0.0833 0.0817 0.9778 1.0102

θ2,2 0.0000 0.0004 −0.0004 – 0.0496 0.0501 0.0003 −0.0003 – 0.0485 0.0481 1.0223 1.0411

θ2,3 2.0000 2.0115 −0.0115 0.58% 0.0813 0.0803 2.0112 −0.0112 0.56% 0.0840 0.0792 0.9680 1.0141

θ3,1 −1.5000 −1.5060 0.0060 0.40% 0.0658 0.0654 −1.5056 0.0056 0.37% 0.0666 0.0652 0.9882 1.0030

θ3,2 −0.5000 −0.5034 0.0034 0.69% 0.0514 0.0519 −0.5032 0.0032 0.65% 0.0504 0.0515 1.0199 1.0074

θ3,3 0.0000 −0.0004 0.0004 – 0.0496 0.0502 −0.0005 0.0005 – 0.0493 0.0495 1.0055 1.0132

θ3,4 0.5000 0.5010 −0.0010 0.20% 0.0514 0.0517 0.5007 −0.0007 0.14% 0.0517 0.0513 0.9947 1.0078

θ3,5 1.5000 1.5084 −0.0084 0.56% 0.0659 0.0657 1.5081 −0.0081 0.54% 0.0683 0.0659 0.9640 0.9976

β1,1 1.2000 1.2094 −0.0094 0.78% 0.0531 0.0533 1.2091 −0.0091 0.76% 0.0550 0.0529 0.9653 1.0071

β1,2 −0.2000 −0.1995 −0.0005 0.23% 0.0389 0.0389 −0.1995 −0.0005 0.25% 0.0411 0.0390 0.9473 0.9984

β1,3 −1.0000 −1.0040 0.0040 0.40% 0.0490 0.0510 −1.0039 0.0039 0.39% 0.0496 0.0509 0.9881 1.0022

β2,1 1.2000 1.2111 −0.0111 0.93% 0.0531 0.0524 1.2106 −0.0106 0.89% 0.0550 0.0519 0.9653 1.0095

Continued on next page
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Table B.1: (continued)

Parameters Pairwise Likelihood Tripletwise Likelihood Relative Efficiency

True

Value

Mean

Estimate
Bias

Absolute

Perc.

Bias

Asympt.

Standard

Error

(Mean)

Finite

Sample

Standard

Error

Mean

Estimate
Bias

Absolute

Perc.

Bias

Asympt.

Standard

Error

(Median)

Finite

Sample

Standard

Error

ASEfull

ASENA

FSSEfull

FSSENA

β2,2 −0.2000 −0.2004 0.0004 0.19% 0.0387 0.0381 −0.2002 0.0002 0.09% 0.0408 0.0379 0.9485 1.0063

β2,3 −1.0000 −1.0044 0.0044 0.44% 0.0489 0.0493 −1.0041 0.0041 0.41% 0.0495 0.0488 0.9881 1.0103

β3,1 1.2000 1.2098 −0.0098 0.81% 0.0488 0.0480 1.2094 −0.0094 0.78% 0.0509 0.0477 0.9604 1.0066

β3,2 −0.2000 −0.2006 0.0006 0.30% 0.0364 0.0357 −0.2006 0.0006 0.30% 0.0384 0.0357 0.9483 1.0014

β3,3 −1.0000 −1.0031 0.0031 0.31% 0.0452 0.0456 −1.0028 0.0028 0.28% 0.0459 0.0457 0.9843 0.9993

ρ12 0.8000 0.8015 −0.0015 0.19% 0.0222 0.0226 0.8017 −0.0017 0.22% 0.0228 0.0219 0.9746 1.0356

ρ13 0.7000 0.6996 0.0004 0.05% 0.0236 0.0236 0.7000 0.0000 0.00% 0.0246 0.0236 0.9580 1.0017

ρ23 0.9000 0.9010 −0.0010 0.11% 0.0129 0.0130 0.9013 −0.0013 0.14% 0.0133 0.0127 0.9669 1.0236
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Table B.2: This table displays a comparison of pairwise and tripletwise likelihood estimates from the multivariate ordered

logit using S = 1000 simulated data sets, n = 1000 subjects and J = 3 outcomes.

Parameters Pairwise Likelihood Tripletwise Likelihood Relative Efficiency

True

Value

Mean

Estimate
Bias

Absolute

Perc.

Bias

Asympt.

Standard

Error

Finite

Sample

Standard

Error

Mean

Estimate
Bias

Absolute

Perc.

Bias

Asympt.

Standard

Error

Finite

Sample

Standard

Error

ASEfull

ASENA

FSSEfull

FSSENA

θ1,1 −1.0000 −1.0082 0.0082 0.82% 0.0809 0.0792 −1.0080 0.0080 0.80% 0.0823 0.0793 0.9821 0.9994

θ1,2 0.0000 0.0005 −0.0005 – 0.0734 0.0723 0.0006 −0.0006 – 0.0742 0.0721 0.9897 1.0019

θ1,3 1.0000 1.0096 −0.0096 0.96% 0.0809 0.0786 1.0096 −0.0096 0.96% 0.0864 0.0786 0.9367 0.9997

θ2,1 −2.0000 −2.0160 0.0160 0.80% 0.1002 0.0949 −2.0158 0.0158 0.79% 0.1027 0.0946 0.9764 1.0030

θ2,2 0.0000 −0.0020 0.0020 – 0.0731 0.0717 −0.0016 0.0016 – 0.0739 0.0704 0.9884 1.0188

θ2,3 2.0000 2.0130 −0.0130 0.65% 0.1001 0.0996 2.0129 −0.0129 0.64% 0.1072 0.0986 0.9338 1.0101

θ3,1 −1.5000 −1.5129 0.0129 0.86% 0.0880 0.0821 −1.5122 0.0122 0.81% 0.0912 0.0823 0.9646 0.9982

θ3,2 −0.5000 −0.5082 0.0082 1.64% 0.0743 0.0739 −0.5077 0.0077 1.54% 0.0748 0.0734 0.9936 1.0057

θ3,3 0.0000 −0.0024 0.0024 – 0.0725 0.0713 −0.0020 0.0020 – 0.0737 0.0708 0.9829 1.0081

θ3,4 0.5000 0.5012 −0.0012 0.23% 0.0743 0.0711 0.5014 −0.0014 0.28% 0.0771 0.0706 0.9635 1.0064

θ3,5 1.5000 1.5095 −0.0095 0.63% 0.0881 0.0843 1.5096 −0.0096 0.64% 0.0954 0.0840 0.9232 1.0030

β1,1 1.2000 1.2098 −0.0098 0.82% 0.0760 0.0735 1.2094 −0.0094 0.78% 0.0812 0.0732 0.9360 1.0038

β1,2 −0.2000 −0.2043 0.0043 2.15% 0.0630 0.0622 −0.2042 0.0042 2.08% 0.0746 0.0623 0.8445 0.9989

β1,3 −1.0000 −1.0106 0.0106 1.06% 0.0723 0.0730 −1.0106 0.0106 1.06% 0.0741 0.0728 0.9752 1.0027

β2,1 1.2000 1.2074 −0.0074 0.62% 0.0729 0.0705 1.2075 −0.0075 0.62% 0.0787 0.0700 0.9262 1.0067

β2,2 −0.2000 −0.2025 0.0025 1.25% 0.0613 0.0619 −0.2026 0.0026 1.28% 0.0742 0.0621 0.8263 0.9980

Continued on next page
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Table B.2: (continued)

Parameters Pairwise Likelihood Tripletwise Likelihood Relative Efficiency

True

Value

Mean

Estimate
Bias

Absolute

Perc.

Bias

Asympt.

Standard

Error

(Mean)

Finite

Sample

Standard

Error

Mean

Estimate
Bias

Absolute

Perc.

Bias

Asympt.

Standard

Error

(Median)

Finite

Sample

Standard

Error

ASEfull

ASENA

FSSEfull

FSSENA

β2,3 −1.0000 −1.0080 0.0080 0.80% 0.0697 0.0677 −1.0083 0.0083 0.83% 0.0714 0.0673 0.9762 1.0061

β3,1 1.2000 1.2096 −0.0096 0.80% 0.0720 0.0723 1.2095 −0.0095 0.79% 0.0774 0.0720 0.9294 1.0037

β3,2 −0.2000 −0.2040 0.0040 2.00% 0.0602 0.0613 −0.2039 0.0039 1.94% 0.0730 0.0612 0.8247 1.0010

β3,3 −1.0000 −1.0113 0.0113 1.13% 0.0685 0.0684 −1.0114 0.0114 1.14% 0.0703 0.0681 0.9739 1.0048

ρ12 0.8000 0.7997 0.0003 0.04% 0.0190 0.0189 0.7998 0.0002 0.02% 0.0203 0.0190 0.9376 0.9967

ρ13 0.7000 0.6988 0.0012 0.17% 0.0240 0.0242 0.6989 0.0011 0.16% 0.0256 0.0240 0.9382 1.0097

ρ23 0.9000 0.9003 −0.0003 0.03% 0.0107 0.0105 0.9004 −0.0004 0.04% 0.0116 0.0105 0.9200 1.0037
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Table B.3: This table displays a comparison of the full observations model and the missing observations model for pairwise

likelihood threshold parameter estimates as well as coefficient estimates from the multivariate ordered response model with

probit link using the S = 1000 simulated data sets, ns = 1000 subjects for each sector and J = 3 outcome dimensions.

Parameters Full Observations Model Missing Observations Model Relative Efficiency

True

Value

Mean

Estimate
Bias

Absolute

Perc.

Bias

Asympt.

Standard

Error

Finite

Sample

Standard

Error

Mean

Estimate
Bias

Absolute

Perc.

Bias

Asympt.

Standard

Error

Finite

Sample

Standard

Error

ASEfull

ASENA

FSSEfull

FSSENA

θ1,1 −1.0000 −1.0020 0.0020 0.20% 0.0227 0.0287 −1.0022 0.0022 0.22% 0.0250 0.0308 0.9076 0.9331

θ1,2 0.0000 0.0001 −0.0001 – 0.0194 0.0224 0.0005 −0.0005 – 0.0215 0.0239 0.9019 0.9364

θ1,3 1.0000 1.0015 −0.0015 0.15% 0.0226 0.0281 1.0018 −0.0018 0.18% 0.0249 0.0294 0.9076 0.9544

θ2,1 −2.0000 −2.0041 0.0041 0.21% 0.0323 0.0494 −2.0050 0.0050 0.25% 0.0383 0.0542 0.8425 0.9110

θ2,2 0.0000 −0.0005 0.0005 – 0.0193 0.0255 −0.0000 0.0000 – 0.0228 0.0283 0.8438 0.9011

θ2,3 2.0000 2.0040 −0.0040 0.20% 0.0322 0.0486 2.0044 −0.0044 0.22% 0.0382 0.0524 0.8429 0.9267

θ3,1 −1.5000 −1.5013 0.0013 0.09% 0.0256 0.0366 −1.5007 0.0007 0.05% 0.0365 0.0455 0.7012 0.8044

θ3,2 −0.5000 −0.5003 0.0003 0.07% 0.0200 0.0253 −0.4999 −0.0001 0.03% 0.0282 0.0311 0.7075 0.8138

θ3,3 0.0000 0.0001 −0.0001 – 0.0191 0.0226 0.0002 −0.0002 – 0.0269 0.0293 0.7108 0.7699

θ3,4 0.5000 0.4995 0.0005 0.10% 0.0200 0.0249 0.5000 0.0000 0.00% 0.0282 0.0316 0.7079 0.7869

θ3,5 1.5000 1.5039 −0.0039 0.26% 0.0256 0.0370 1.5042 −0.0042 0.28% 0.0366 0.0462 0.7006 0.8014

β1,1 1.2000 1.2033 −0.0033 0.28% 0.0204 0.0265 1.2039 −0.0039 0.32% 0.0227 0.0277 0.9027 0.9569

β1,2 −0.2000 −0.2004 0.0004 0.22% 0.0149 0.0156 −0.2007 0.0007 0.33% 0.0165 0.0169 0.8987 0.9260

β1,3 −1.0000 −1.0019 0.0019 0.19% 0.0188 0.0244 −1.0027 0.0027 0.27% 0.0209 0.0260 0.9025 0.9383

β2,1 1.2000 1.2036 −0.0036 0.30% 0.0206 0.0286 1.2040 −0.0040 0.34% 0.0244 0.0313 0.8437 0.9143
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Table B.3: (continued)

Parameters Full Observations Model Missing Observations Model Relative Efficiency

True

Value

Mean

Estimate
Bias

Absolute

Perc.

Bias

Asympt.

Standard

Error

(Mean)

Finite

Sample

Standard

Error

Mean

Estimate
Bias

Absolute

Perc.

Bias

Asympt.

Standard

Error

(Median)

Finite

Sample

Standard

Error

ASEfull

ASENA

FSSEfull

FSSENA

β2,2 −0.2000 −0.2002 0.0002 0.12% 0.0148 0.0174 −0.2001 0.0001 0.03% 0.0175 0.0204 0.8455 0.8555

β2,3 −1.0000 −1.0014 0.0014 0.14% 0.0189 0.0267 −1.0012 0.0012 0.12% 0.0224 0.0298 0.8447 0.8979

β3,1 1.2000 1.2027 −0.0027 0.22% 0.0187 0.0265 1.2027 −0.0027 0.23% 0.0262 0.0323 0.7123 0.8199

β3,2 −0.2000 −0.1999 −0.0001 0.04% 0.0138 0.0143 −0.1993 −0.0007 0.36% 0.0191 0.0193 0.7224 0.7409

β3,3 −1.0000 −1.0011 0.0011 0.11% 0.0173 0.0233 −1.0017 0.0017 0.17% 0.0242 0.0289 0.7145 0.8061

ρ112 0.8000 0.8006 −0.0006 0.08% 0.0211 0.0218 0.8007 −0.0007 0.08% 0.0240 0.0244 0.8800 0.8927

ρ113 0.7000 0.6970 0.0030 0.43% 0.0216 0.0221 0.6990 0.0010 0.14% 0.0303 0.0312 0.7147 0.7071

ρ123 0.9000 0.8996 0.0004 0.04% 0.0122 0.0124 0.9008 −0.0008 0.09% 0.0181 0.0182 0.6720 0.6830

ρ212 0.5000 0.4988 0.0012 0.25% 0.0355 0.0359 0.4995 0.0005 0.11% 0.0411 0.0412 0.8633 0.8723

ρ213 0.3000 0.2974 0.0026 0.87% 0.0381 0.0411 0.2971 0.0029 0.98% 0.0555 0.0578 0.6872 0.7114

ρ223 0.4000 0.3984 0.0016 0.39% 0.0360 0.0364 0.3976 0.0024 0.59% 0.0587 0.0607 0.6138 0.6005

ρ312 0.2000 0.1979 0.0021 1.04% 0.0437 0.0455 0.1991 0.0009 0.43% 0.0503 0.0526 0.8686 0.8645

ρ313 0.3000 0.2981 0.0019 0.64% 0.0382 0.0406 0.2959 0.0041 1.35% 0.0544 0.0568 0.7017 0.7147

ρ323 0.1000 0.0981 0.0019 1.90% 0.0419 0.0415 0.0972 0.0028 2.83% 0.0644 0.0660 0.6505 0.6293

ρ412 0.9000 0.9015 −0.0015 0.16% 0.0151 0.0160 0.9017 −0.0017 0.19% 0.0172 0.0187 0.8772 0.8556

ρ413 0.9000 0.9002 −0.0002 0.02% 0.0097 0.0100 0.9003 −0.0003 0.03% 0.0139 0.0147 0.6942 0.6785

ρ423 0.9000 0.9003 −0.0003 0.03% 0.0121 0.0124 0.9008 −0.0008 0.09% 0.0190 0.0190 0.6375 0.6549

ρ512 0.8000 0.7999 0.0001 0.01% 0.0212 0.0218 0.8003 −0.0003 0.04% 0.0241 0.0248 0.8784 0.8795
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Table B.3: (continued)

Parameters Full Observations Model Missing Observations Model Relative Efficiency

True

Value

Mean

Estimate
Bias

Absolute

Perc.

Bias

Asympt.

Standard

Error

(Mean)

Finite

Sample

Standard

Error

Mean

Estimate
Bias

Absolute

Perc.

Bias

Asympt.

Standard

Error

(Median)

Finite

Sample

Standard

Error

ASEfull

ASENA

FSSEfull

FSSENA

ρ513 0.3000 0.2976 0.0024 0.81% 0.0381 0.0411 0.2970 0.0030 0.99% 0.0570 0.0579 0.6688 0.7104

ρ523 0.6000 0.6003 −0.0003 0.06% 0.0284 0.0288 0.6004 −0.0004 0.07% 0.0452 0.0433 0.6296 0.6640

ρ612 0.1000 0.1011 −0.0011 1.11% 0.0448 0.0472 0.1008 −0.0008 0.77% 0.0509 0.0524 0.8807 0.9008

ρ613 0.1000 0.1012 −0.0012 1.23% 0.0416 0.0409 0.1023 −0.0023 2.26% 0.0604 0.0599 0.6894 0.6835

ρ623 0.1000 0.1005 −0.0005 0.45% 0.0417 0.0426 0.0986 0.0014 1.41% 0.0671 0.0681 0.6223 0.6255
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Table B.4: This table displays a comparison of the full observations model and the missing observations model for pairwise

likelihood threshold parameter estimates as well as coefficient estimates from the multivariate ordered response model with

logit link using the S = 1000 simulated data sets, ns = 1000 subjects for each sector and J = 3 outcome dimensions.

Parameters Full Observations Model Missing Observations Model Relative Efficiency

True

Value

Mean

Estimate
Bias

Absolute

Perc.

Bias

Asympt.

Standard

Error

(Mean)

Finite

Sample

Standard

Error

Mean

Estimate
Bias

Absolute

Perc.

Bias

Asympt.

Standard

Error

(Median)

Finite

Sample

Standard

Error

ASEfull

ASENA

FSSEfull

FSSENA

θ1,1 −1.0000 −1.0034 0.0034 0.34% 0.0309 0.0308 −1.0035 0.0035 0.35% 0.0343 0.0333 0.9024 0.9266

θ1,2 0.0000 −0.0006 0.0006 – 0.0280 0.0276 −0.0006 0.0006 – 0.0312 0.0308 0.8994 0.8960

θ1,3 1.0000 1.0032 −0.0032 0.32% 0.0309 0.0293 1.0033 −0.0033 0.33% 0.0343 0.0323 0.9020 0.9068

θ2,1 −2.0000 −2.0020 0.0020 0.10% 0.0385 0.0385 −2.0030 0.0030 0.15% 0.0457 0.0458 0.8435 0.8417

θ2,2 0.0000 −0.0001 0.0001 – 0.0280 0.0271 −0.0006 0.0006 – 0.0331 0.0323 0.8442 0.8370

θ2,3 2.0000 2.0023 −0.0023 0.11% 0.0386 0.0374 2.0035 −0.0035 0.17% 0.0457 0.0428 0.8434 0.8750

θ3,1 −1.5000 −1.5063 0.0063 0.42% 0.0337 0.0335 −1.5066 0.0066 0.44% 0.0475 0.0478 0.7097 0.7014

θ3,2 −0.5000 −0.5025 0.0025 0.50% 0.0284 0.0280 −0.5037 0.0037 0.73% 0.0398 0.0398 0.7143 0.7038

θ3,3 0.0000 −0.0005 0.0005 – 0.0277 0.0263 −0.0010 0.0010 – 0.0387 0.0379 0.7152 0.6951

θ3,4 0.5000 0.5024 −0.0024 0.48% 0.0284 0.0279 0.5016 −0.0016 0.33% 0.0398 0.0389 0.7142 0.7174

θ3,5 1.5000 1.5043 −0.0043 0.29% 0.0337 0.0338 1.5031 −0.0031 0.21% 0.0475 0.0471 0.7097 0.7169

β1,1 1.2000 1.2048 −0.0048 0.40% 0.0287 0.0283 1.2050 −0.0050 0.42% 0.0320 0.0321 0.8958 0.8791

β1,2 −0.2000 −0.2009 0.0009 0.47% 0.0236 0.0232 −0.2004 0.0004 0.21% 0.0265 0.0263 0.8932 0.8815

β1,3 −1.0000 −1.0049 0.0049 0.49% 0.0272 0.0271 −1.0050 0.0050 0.50% 0.0304 0.0294 0.8949 0.9210

β2,1 1.2000 1.2018 −0.0018 0.15% 0.0273 0.0270 1.2025 −0.0025 0.21% 0.0323 0.0320 0.8446 0.8452
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Table B.4: (continued)

Parameters Full Observations Model Missing Observations Model Relative Efficiency

True

Value

Mean

Estimate
Bias

Absolute

Perc.

Bias

Asympt.

Standard

Error

Finite

Sample

Standard

Error

Mean

Estimate
Bias

Absolute

Perc.

Bias

Asympt.

Standard

Error

Finite

Sample

Standard

Error

ASEfull

ASENA

FSSEfull

FSSENA

β2,2 −0.2000 −0.2006 0.0006 0.32% 0.0228 0.0229 −0.2003 0.0003 0.14% 0.0270 0.0270 0.8448 0.8469

β2,3 −1.0000 −1.0017 0.0017 0.17% 0.0260 0.0257 −1.0019 0.0019 0.19% 0.0308 0.0293 0.8443 0.8779

β3,1 1.2000 1.2048 −0.0048 0.40% 0.0269 0.0271 1.2059 −0.0059 0.49% 0.0371 0.0376 0.7239 0.7194

β3,2 −0.2000 −0.2008 0.0008 0.40% 0.0223 0.0215 −0.2015 0.0015 0.73% 0.0306 0.0311 0.7298 0.6924

β3,3 −1.0000 −1.0043 0.0043 0.43% 0.0255 0.0258 −1.0053 0.0053 0.53% 0.0353 0.0355 0.7239 0.7256

ρ112 0.8000 0.8003 −0.0003 0.04% 0.0174 0.0173 0.8008 −0.0008 0.10% 0.0198 0.0200 0.8807 0.8612

ρ113 0.7000 0.7002 −0.0002 0.03% 0.0218 0.0221 0.6995 0.0005 0.07% 0.0307 0.0321 0.7105 0.6894

ρ123 0.9000 0.9002 −0.0002 0.02% 0.0097 0.0097 0.8995 0.0005 0.06% 0.0147 0.0149 0.6632 0.6501

ρ212 0.5000 0.5006 −0.0006 0.11% 0.0326 0.0317 0.4998 0.0002 0.04% 0.0378 0.0372 0.8610 0.8538

ρ213 0.3000 0.3005 −0.0005 0.15% 0.0386 0.0367 0.3013 −0.0013 0.44% 0.0563 0.0545 0.6853 0.6739

ρ223 0.4000 0.3979 0.0021 0.53% 0.0344 0.0334 0.3957 0.0043 1.07% 0.0563 0.0562 0.6111 0.5952

ρ312 0.2000 0.1987 0.0013 0.65% 0.0412 0.0412 0.1999 0.0001 0.04% 0.0474 0.0475 0.8694 0.8667

ρ313 0.3000 0.2990 0.0010 0.33% 0.0386 0.0379 0.3004 −0.0004 0.13% 0.0547 0.0534 0.7050 0.7101

ρ323 0.1000 0.0980 0.0020 1.96% 0.0405 0.0406 0.0963 0.0037 3.74% 0.0625 0.0633 0.6482 0.6412

ρ412 0.9000 0.9003 −0.0003 0.04% 0.0109 0.0110 0.9007 −0.0007 0.08% 0.0125 0.0128 0.8679 0.8608

ρ413 0.9000 0.9005 −0.0005 0.06% 0.0089 0.0085 0.9008 −0.0008 0.08% 0.0129 0.0127 0.6933 0.6707

ρ423 0.9000 0.9002 −0.0002 0.02% 0.0097 0.0100 0.9011 −0.0011 0.12% 0.0152 0.0156 0.6376 0.6397

ρ512 0.8000 0.7992 0.0008 0.10% 0.0175 0.0176 0.7997 0.0003 0.04% 0.0199 0.0204 0.8767 0.8620
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Table B.4: (continued)

Parameters Full Observations Model Missing Observations Model Relative Efficiency

True

Value

Mean

Estimate
Bias

Absolute

Perc.

Bias

Asympt.

Standard

Error

Finite

Sample

Standard

Error

Mean

Estimate
Bias

Absolute

Perc.

Bias

Asympt.

Standard

Error

Finite

Sample

Standard

Error

ASEfull

ASENA

FSSEfull

FSSENA

ρ513 0.3000 0.3009 −0.0009 0.30% 0.0385 0.0383 0.3012 −0.0012 0.41% 0.0576 0.0573 0.6688 0.6675

ρ523 0.6000 0.6011 −0.0011 0.18% 0.0264 0.0266 0.6017 −0.0017 0.28% 0.0420 0.0417 0.6295 0.6382

ρ612 0.1000 0.1003 −0.0003 0.28% 0.0425 0.0424 0.1017 −0.0017 1.65% 0.0482 0.0485 0.8812 0.8745

ρ613 0.1000 0.1025 −0.0025 2.49% 0.0421 0.0403 0.1064 −0.0064 6.35% 0.0610 0.0621 0.6907 0.6491

ρ623 0.1000 0.1006 −0.0006 0.59% 0.0405 0.0402 0.1020 −0.0020 2.03% 0.0649 0.0662 0.6242 0.6070
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Table B.5: This table displays the threshold parameter estimates from the multivariate ordered

probit model using the multiple corporate credit ratings data set.

Probit link

S&P Fitch Moody’s

Thresholds Est. SE Est. SE Thresholds Est. SE

Ca|Caa −4.1522 0.0736

CCC/C|B −3.5216 0.0515 −3.1305 0.1003 Caa|B −2.6254 0.0474

B|BB −1.4999 0.0371 −1.6147 0.0689 B|Ba −1.0285 0.0390

BB|BBB −0.3165 0.0359 −0.5537 0.0629 Ba|Baa −0.2359 0.0386

BBB|A 1.0612 0.0377 0.8229 0.0632 Baa|A 1.1502 0.0406

A|AA 2.4967 0.0455 2.3785 0.0723 A|Aa 2.6008 0.0508

AA|AAA 3.5155 0.0598 3.6558 0.1045 Aa|Aaa 3.6487 0.0667

Table B.6: This table displays the regression coefficients from the multivariate ordered probit

model using the multiple corporate credit ratings data set.

S&P Moody’s Fitch

Covariate Est. SE Est. SE Est. SE

operating CF cov. 0.0551 0.0123 0.0695 0.0134 0.0591 0.0181

cash/assets −0.0598 0.0099 −0.0488 0.0107 −0.0778 0.0139

tangibility 0.1337 0.0120 0.1504 0.0132 0.1154 0.0172

debt/assets −0.3654 0.0131 −0.3390 0.0144 −0.4242 0.0230

ST debt/debt 0.1010 0.0108 0.1178 0.0121 0.1208 0.0163

ret.earnings/assets 0.4105 0.0124 0.3937 0.0141 0.3587 0.0175

return on capital 0.1795 0.0132 0.1911 0.0141 0.1893 0.0181

EBIT margin 0.1193 0.0120 0.1064 0.0121 0.1235 0.0154

R&D/assets 0.1583 0.0098 0.1453 0.0107 0.1642 0.0137

capex/assets −0.0518 0.0119 −0.0698 0.0128 −0.0194 0.0197

RSIZE 0.5018 0.0123 0.5446 0.0138 0.4276 0.0169

BETA −0.1139 0.0101 −0.1035 0.0108 −0.1252 0.0151

SIGMA −0.3514 0.0158 −0.3184 0.0170 −0.3031 0.0289

MB −0.1230 0.0111 −0.1084 0.0129 −0.0619 0.0167
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