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Abstract. Discrete event games are discrete time dynamical systems
whose state transitions are discrete events caused by actions taken by
agents within the game. The agents’ objectives and associated decision
rules need not be known to the game designer in order to impose struc-
ture on a game’s reachable states. Mechanism design for discrete event
games is accomplished by declaring desirable invariant properties and
restricting the state transition functions to conserve these properties at
every point in time for all admissible actions and for all agents, using
techniques familiar from state-feedback control theory. Building upon
these connections to control theory, a framework is developed to equip
these games with estimation properties of signals which are private to
the agents playing the game. Token bonding curves are presented as
discrete event games and numerical experiments are used to investigate
their signal processing properties with a focus on input-output response
dynamics.

Keywords: Estimation · Dynamic Games · Cryptoeconomic Systems.

1 Introduction

Cryptoeconomic systems [26] are data-driven, multiscale, adaptive and dynamic
networks with a system-level state available to all agents. These systems use
cryptographic tokens as information carriers, allowing for economic activities to
emerge on top of a shared distributed ledger technology (DLT) enabled infras-
tructure such as blockchain. Formally, these economies can be described using
a state space representation [23], [31], [32], which allows the encoding of agents,
transactions and mechanisms, as well as state transitions resulting from activi-
ties within the network. Additional requirements on reachable system states can
be imposed using configuration spaces [30] to design possible future system tra-
jectories, without assuming agents’ decision rules or specifying agents’ preference
functions.

Understanding the formal structure of cryptoeconomic systems is facilitated
using game theory, a mathematical framework that formalizes the dynamics of

∗Supported by the Research Institute for Cryptoeconomics at WU Vienna in col-
laboration with BlockScience, Inc.
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multi-agent systems within a spectrum of repeated discrete games (see e.g. [7])
on the one side and continuous differential games (e.g. [10]) on the other side.
Game theory has been applied to cryptoeconomic systems in a variety of ways.
In a DLT protocol layer, the economics of consensus mechanisms [1] and the
effects on network security [15] have been studied using game theoretic concepts.
Applications of DLT to finance, such as portfolio diversification, have also been
studied in [5].

Game-theoretic models are usually based upon a specification of the play-
ers, or agents, and their preferences, strategy sets and associated payoffs. While
standard ‘toy’ models such as the discrete-time repeated prisoner’s dilemma (see
e.g. [21]) and the continuous-time conflict models (e.g. [10]) are pedagogically
useful, more complicated models are required for greater realism. For exam-
ple, population games [22] model strategic interactions with a large number of
individually negligible agents with an explicitly dynamic model of individual
choice defined by the revision protocol of every agent. When stochastic revision
opportunities arise, agents are free to change strategies, resulting in a Markov
process describing the mean dynamics of the system. Three important classes of
population games are potential games [18], supermodular games [25] and stable
games [9]. Potential games use a single global potential function to represent
all players’ incentives to change their strategies, which adds additional structure
to the game environment. An equilibrium is guaranteed to exist, and there is a
wide array of distributed learning algorithms that guarantee convergence.

Learning in games [28], [8], [6] explores how a process might emerge for con-
vergence to e.g. a Nash equilibrium from various initial conditions. Evolutionary
games are similar, focusing on the dynamics of strategy changes within a pop-
ulation [22]. Finally, mean field games are sequential games with a continuum
of players, in which players affect their opponents in ways that are insignificant
at the individual level but significant when aggregated [12], and evolution takes
place according to a dynamical relation [27], [17].

Each of the above modeling paradigms possess different ‘encodings’ of space
and time, agent models, system interaction, and payoffs. But there exists a suffi-
ciently general notion of a game that can subsume most or all of these encodings,
by interpreting a game as a system evolving over time based on the actions of
a group of agents. The game is then akin to the plant of a control system, and
the agents as a collection of individual controllers with private state, signals,
and objectives. Under this interpretation, the design of the game is the design of
the system plant, to be controlled by an a priori unknown set of controllers–the
agents–and becomes a formal mechanism design problem. We introduce such an
interpretation in this work, defining discrete event games as discrete time dy-
namical systems whose state transitions are discrete events caused by actions
taken by agents within the game. In this approach there are observable and
provable states of the interpreted system plant, regardless of agent objectives,
decision rules, etc. which are in general not known to the designer.

Under this interpretation, changes to the system state caused by agent actions
act as samples of their private preferences or private information. This allows
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one to consider a game as an estimator that gathers information over time from
a multi-agent system [14]. The game design, then, acts to dynamically estimate
useful summary statistics of the underlying distribution of agents, even as that
distribution changes over time. If, for example, agent decision-making influences
the price of an asset (such as a cryptocurrency token), then it is the price which
is estimated by the discrete event game. In a similar fashion, the design pattern
of combining discrete event models with agent behavior and system parameter
estimation also arises in cyber-physical systems [11].

This work contributes to the existing literature in game theory, market theory
and estimation theory. It analyzes economic games played by agents on inten-
tionally shaped sub-spaces of the state space, namely on lower-dimensional man-
ifolds. These manifolds are constructed by the system designers to ensure that
all economic activity takes place on a plane specifically shaped for this purpose,
to reflect the conditions under which the game is intended to be played. A con-
figuration space ensures that these lower-dimensional manifolds have designed
characteristics and conserve invariant properties of the system. This allows the
focus to shift to the conditions and states of the game, rather than to the particu-
lar behavior, strategies and private preferences of agents (since some properties
of the system will stay true regardless of the choices of its participants). The
game outcome allows the inference of system-level properties that are revealed
by actions taken by the agents, without knowing further details about their par-
ticular preferences. By doing so, it is aggregated agent behavior that acts as a
signal, estimating specific parameters (such as prices, treated in this work).

The creation of the conditions for a digital economic game with enforced
state space restrictions described above (and expressed in further detail in [30])
is ensured by the use of DLT, which maintains a tamper-proof universal state
layer. Whether a future state is reachable will heavily depend upon the design of
the configuration space, which can be restricted using token bonding curves to
impose invariant properties upon the system and thereby limit possible system
state trajectories. System participants will make their decisions based on the
utility gains they perceive from evaluations of expected effects (in accordance
with their private hidden preferences), but will take into consideration that out-
comes will follow global laws of motion dictated by the ‘rules of the game’
encoded in the shape of the space. A market for tokens emerges as a result of
economic activity between agents, with the token price as a variable describing
one particular global property of the system estimated from individual signals
of constituent agents. This observation paves the way for a possible contribution
to price theory, treating bonding curves as estimators of market prices.

The paper is structured as follows: Section 2 introduces the notation and def-
initions required to formally represent discrete event games, configuration spaces
and the estimation framework. Section 3 reviews the characteristics of bonding
curves within the state space representation, via the configuration space and the
representation’s mechanisms. It continues with a description of the formal pro-
cess of global price estimation derived from private signals of the agents. Section
4 then presents dynamic price estimation with open loop agents, derived from
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numerical results for a specific bonding curve parametrization. Finally, Section
5 concludes and outlines future work.

2 Notation and Definitions

2.1 Discrete Event Games

Consider a system in which agents interact within a network, the topology of
which is specified as part of a global system. Agents are decision-making entities
that are completely characterized by their state, considered as a finite vector of
k elements taken from a field. In what follows it is assumed that the field is the
usual real number line R, but this may be generalized. The state characterizes
the agent insofar as it specifies ‘private’ information known only that agent.

Agents are indexed by an identifier a ∈ {1, 2, 3, . . . , n < ∞}, while time
t ∈ Z≥0 is a ‘lattice’ upon which agent decisions and actions are placed. Time
also indexes the flow of information, which impacts the state of the agent. Thus,
an agent’s state may be summarized by a vector x̂a,t. Denote the agent state

space by X̂a ⊆ Rk, so that ∀a, ∀t, x̂a,t ∈ X̂a.
The agent-level state is decentralized but may nonetheless be summarized as

(x̂1,t, x̂2,t, . . . , x̂n,t) ∈
n∏
a=1

X̂a ⊆ Rnk.

The network carries its own internal state, the system-level state. As the net-
work is assumed to be a finite (probabilistic or deterministic) state machine, the
internal state may be given by a finite vector of m elements, with (as in the
agent case) elements taken from a field. For simplicity we again assume that
the field is identical for all elements and equals R, but the approach (and fu-
ture research) accommodates arbitrary fields. The system-level state, denoted
x̄t, depends upon the information arrival process summarized by time t. The
system-level state space is then a set X̄ ⊆ Rm, so that ∀t, x̄t ∈ X̄.

The system state xt is the state of all agents and the system-level state, i.e.

xt := (x̂1,t, x̂2,t, . . . , x̂n,t, x̄t) ∈ X :=

n∏
a=1

X̂a × X̄ ⊆ Rnk × Rm.

We refer to X as the system or global state space.
The role of the system is to provide an ‘institutional framework’ within which

agents interact, both with each other via their network interaction, and with the
system itself as the propagator of network interaction. By ‘interaction’ we mean
that, conditional upon a system state xt at time t, an agent a may select from
a menu of actions, representing valid (or “legal”) actions that are admissible to
the network. For simplicity, we suppose that this menu of actions is represented
by a mapping U(xt, a), which is assumed to return a non-empty set at every
point in time and for all agents.3

3It may be the case that, for agent a,

U(xt, a) ≡ U(x̂a,t, a),
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If an agent acts at time t, they select an action ut from U(xt, a). In Section
3 it will be assumed that every agent possesses a decision rule incorporating
available information and the admissible set of actions U(xt, a) at time t. The
action ut does not refer to a particular agent because of the way time operates
as a ‘lattice’ for agent decisions.4 Formally, we require

Assumption 1 Time is sufficiently finely granulated to ensure that action col-
lisions do not occur, i.e. all agent actions are ordered by t.

Assumption 1 means that for every t there is one and only one corresponding
action ut, selected by an agent a from U(xt, a). While this is a formal requirement
for what follows, in practice this assumption is reasonable because the system is
a state machine—hence events within the system arrive in discrete steps.5

The agent’s selection of an action ut changes the system state xt. The system
thus possesses a mechanism that, taking an action, transitions the system state
(i.e. agent level state and the system level state) to the next lattice point t+ 1.
More formally, such a mechanism may be viewed as a transition function f ,
with xt+1 = f(xt, ut). Note that f takes values over all possible agent actions
ut ∈ U(xt, a), for every possible xt and for every a—this may be a consequence
of a conservation law, which is discussed further in Section 2.2 below.

Definition 1. By a discrete event game is meant the tuple (X̄, {X̂a}na=1, U, f),
comprised of the agent and system level state sets, the decision mapping for agent
actions,6 and the system state transition function f .

A trajectory is a sequence of system states {xt} created by the repeated selections
of actions by agents, in response to the system state (or their private agent state,
if the system state is not fully visible to every agent). Without further restrictions
it is clear that there are infinitely many possible trajectory realizations ex ante,
depending upon the richness of the sets underlying the discrete event game. In
what follows, we demonstrate that it is possible (and usually desired) for the
designer of the system to impose additional structure that will restrict possible
trajectory realizations to spaces (such as topological manifolds) that reduce the
complexity of the game’s resulting dynamical evolution.

i.e. the agent’s state space is sufficient to define their actions (this would be the case,
for example, in a game where every agent has their own action set, or where every
agent conditions only upon their own private information). In what follows we allow
for full conditioning on xt.

4Naturally there may still be an implicit unique mapping from ut to a, as is the
case with sending Bitcoin, [31].

5While ostensibly this model assumes a strict ordering of actions, this is a conse-
quence of the definition of xt as a global state and f as a global mechanism. Partial
orderings may suffice provided a local state transition depends only upon information
provided in the local state; see e.g. [14]

6The decision mapping defines an agent’s strategy set, which is a standard primitive
defining a game; see e.g. [7].
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2.2 Configuration Spaces

In the system design process one or more quantities of interest are usually con-
served, i.e. are time-invariant over every possible global system state trajectory.
A simple example is a discrete event game in which at time t a finite resource,
Yt, must be allocated across agents. If we suppose that an agent a’s local state
at t is their allocation of this resource, then resource conservation implies

n∑
a=1

x̂a,t ≡ Yt ∀t. (1)

This is a restriction on the attainable combinations of individual agent resources
that must respect the allocation restriction.

Over time the relative allocation between agents may change, so that for some
or all agents, x̂a,t 6= x̂a,t+1. But restriction (1) nevertheless holds at every t. In
addition, there may be flows into or out of the system that cause Yt to change,
where the change ∆Yt is allocated to one or more agents. Such flows are common
constructs in network routing [29], crypto token allocation (such as within the
original Bitcoin protocol, see [19]) and crypto mining games (e.g. [24]), where in
the latter case there are conserved flows between agents but injections of new
token supply into the system according to predefined monetary policies.

The key implication of resource conservation, such as (1) above, is that it
reduces the dimension of allowable system trajectories—generally, there is a re-
duction of one dimension for each (independent) restriction. The system designer
may thus focus upon a smaller space for realizations of the trajectory, called the
configuration space (see e.g. [30] for an introduction to configuration spaces).

The quantity (or quantities) conserved throughout the dynamical evolution
of the system can be expressed by designing conservation laws, i.e. real-valued7

functional (linear or non-linear) relationships V : X → R where the quantity to
be conserved, such as a global state xt, satisfies V (xt) ≡ V̄ ∈ R ∀t.

A conservation law so designed may be enforced by ensuring that the global
state transition mechanism over admissible action sets U(xt, a), ∀a, respects

V (x0) = V̄ ,

V (xt) = V (f(xt;ut)) ∀t, ∀ut.

Selecting a pair (V, f) to implement desired conservation laws is the mechanism
design problem facing the system designer. It depends crucially upon which con-
served quantities are present, as well as upon the requirements defining the kinds
of actions agents expect to be able to take. If f characterized a set of actions such
as sending cryptocurrency, and V encoded a desired invariant such as conserving
that cryptocurrency, then one could derive the necessary admissible function U

7Although we focus upon real-valued laws here because of the estimation of con-
tinuous real-valued signals, in general finite or even infinite state machines may also
characterize conservation laws.
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by restricting the domain of f to the preimage of the invariant set. This results
in the rule that agent a cannot send tokens exceeding its available balance.

A more general mechanism design problem characterizes the goal of the sys-
tem using performance metrics, which tell the designer—and the participants
in the system—which states (or functions of states) are considered desirable.
When the game is allocating resources it may do so to the benefit of those
agents that move the system state in a direction which improves relative to a
performance metric. Framed as such, the network itself may be viewed as an
evolutionary optimization algorithm where the agents’ local efforts to maximize
payouts serve to ascend a potential field characterized by the aforementioned
performance metrics.

Fig. 1: Block Diagram for a discrete event game with estimation capabilities

2.3 Samples, Signals, and Estimation

In addition to conservation laws, there may be desirable quantities of interest
that are generated by the system as a result of agent actions {ut}. For example,
the buy or sell decisions made according to a token bonding curve will determine
a realized price, P̂t. This price is subject to noise from exogenous factors (e.g.
market conditions, off-chain supply and demand shocks, etc.), denoted by some
process εt, and so will be difficult to estimate. In general, we let ŷt = h(xt, ut)
represent the realized value, which is a noisy signal of the variable of interest.
The map h is the measurement technology, and may be interpreted as a sensor.
See Figure 1 for a block diagram representation of the system.

By implementing a pair (V, f), the system designer creates an estimate yt
from noisy samples ŷt, by forcing the trajectory of realized states to admit a
mapping G carrying xt to the estimate yt. For example, a token bonding curve
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restricts token demand and supply and in turn generates an estimate Pt of a
hidden signal, for which realized price P̂t is a noisy sample. In general, the se-
quence of samples {ŷt} depends upon individual agent mappings, which attempt
to condition upon εt and the system state xt. This allows the local representation
of yt, denoted by ya,t, to be expressed in the form ga(xt, εt). We interpret the
mapping ga(xt, εt) as the representation technology of the agent. The local rep-
resentation ya,t may then be used by agent a in decision-making, i.e. there may
be a further mapping carrying xt, ya,t and εt (if separately influencing decisions
apart from ga) into a decision ut from U(xt, a). Such a mapping, although not
articulated in detail here, would be a decision rule for the agent.

There may be potential feedback between an agent’s action, ut, and the factor
influencing the signal ŷt, i.e. it may be that

∂εt
∂ut
6= 0. (2)

This is the case for the token bonding curve example presented in Section 3:
the signal is the actual realized token price, P̂t, which is determined by buy
and sell decisions of the agents, while the spot price Pt is determined from the
conservation law V and the same agent trading decisions.

The first-order impact of the agent’s action on the noise process εt given in (2)
implies that an observation of signal ŷt at t represents a ‘draw’ or sample from
the underlying distribution of local agent representations ya,t. In essence, the
estimate yt is the system’s ‘best guess’ of the signal ŷt, accounting for variations
in both space (agents) and time. A performance metric that naturally suggests
itself is that of an error et such that

et = e(yt, ŷt) := ‖yt − ŷt‖ ∀t.

The error specification allows an application of estimation theory to the analysis
of the system’s stochastic convergence, by ‘steering’ the system to achieve as low
an error as possible. Future research will also focus upon boundary conditions
for the error for a variety of signal and estimate specifications.

In practice, the more detailed the foundations of the discrete event game, and
its designed implementation of (V, f), the easier it will be to arrive at results
with formal bounds in a chosen error metric. The cost, naturally, is the risk that
violations of these more detailed modeling assumptions have the potential to
undermine conclusions drawn in this fashion. Our analysis in this sense is simply
a ‘launching point’ for a richer modeling paradigm crossing dynamic mechanism
design theory with estimation theory (see e.g. [13]).

3 Bonding Curves as Price Estimators

The token bonding curve system, in which a community token is managed using
bonding curve contracts, fits readily within the framework outlined in Section
2. The system specifies a series of token holdings as outlined in [30], which we
summarize here.
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Definition 2. The reserve Rt ∈ R++ at time t is the total quantity of reserve
currency tokens bonded to the bonding curve contract.

The reserve currency is provided by a contract external to the community de-
ploying the bonding curve. This could be the native cryptocurrency or tokenized
fiat, such as a stablecoin. At time t each agent a possesses their own holding of
the reserve currency, denoted by ra,t > 0.

Definition 3. The supply St ∈ R++ at time t is the total quantity of commu-
nity tokens issued by the bonding curve contract.

The supply is the total quantity of the community token held by agents. An
individual holding sa,t of the supply is part of the local state of agent a at t.

A bonding curve may be characterized using the mechanism design process
(V, f)—in particular, it provides the mechanism f and the mappings U guaran-
teed to preserve V under f . Agents can adjust their token holdings by depositing
the reserve currency to mint new community tokens, or burn all or part of their
community token holdings to withdraw the reserve currency. Regardless, the
supply St and reserve Rt always satisfy V (Rt, St) = constant. Furthermore, the
system’s estimate of the token price Pt = P (Rt, St) is part of the state.

Definition 4. The spot price Pt ∈ R++ at time t is the estimate of the value
of the community token, in units of R per units of S.

Since agents can freely adjust their community token holdings via the bonding
curve, the spot price Pt may be interpreted as a dynamic estimate of the value
imbued in the token by agents with representation technology ga(xt, ε). The
justification for this claim is further borne out by the characterization of the
configuration space in Section 3.1. Note that each agent may hold their own
(private and potentially exogenous) estimate of the value of the community
token, denoted pa,t = ga(xt, ε)—this will be discussed further in Section 3.3.

Definition 5. The system-level state is x̄t := (Rt, St, Pt) ∈ X̄ ⊂ R3
++.

We shall see shortly why X̄ is a proper subset of R3
++ once token bonding curve

and supply conservation laws are taken into consideration.
Each element of the system-level state has an agent-level state counterpart,

based upon the agent community token and reserve holdings.

Definition 6. The agent-level state is x̂a,t := (ra,t, sa,t, pa,t) ∈ X̂a ⊆ R3
++.

In what follows we suppose (although it is not strictly required) that agents
can observe the system-level state, but not each other’s agent-level states. The
system state xt exists for all t even though it is not globally observable.

Definition 7. The system state is xt = (x̂1,t, . . . x̂n,t, x̄t) ∈ X ⊂ R3(n+1)
++ and

lies in the Cartesian product of the system-level state and the agent-level state.
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Fig. 2: Block Diagram for a discrete event game, matching an agent-based model
on a bonding curve, including observable and unobservable estimation errors.

3.1 The Configuration Space

The system design incorporates both a mechanism f , which is the token bonding
curve mechanism above, and a set of conservation laws V , indicating the design
goals that can be formulated as time-invariant quantities of interest. In the case
of the bonding curve, a system level design goal is to establish diminishing returns
for both depositing and withdrawing reserve currency from the bonding curve.
This is accomplished by restricting the relationship between R and S:

Definition 8. The bonding curve conservation function is given by

V (Rt, St) :=
Sκt
Rt
≡ V0, (3)

where V0 = V (R0, S0) :=
Sκ0
R0

is a constant defined by initial supply S0 and initial
reserve R0. Parameter κ is the curvature of the bonding curve.

Given Definition 8, Proposition 1 of [30] allows us to assert that the spot price
Pt is completely determined by reserve currency and community token supply
holdings and the functional form of V :

Pt = P (Rt, St) = − ∂V/∂S

∂V/∂R

∣∣∣∣
(Rt,St)

. (4)

Definition 9. The system-level configuration space, X̄C is a 1-manifold,
created by applying two one-dimensional restrictions, V (Rt, St) = V0 and Pt =
P (Rt, St) to the three-dimensional state space X̄:

X̄C := {x̄ = (Rt, St, Pt) ∈ X̄ | V (Rt, St) = V0, Pt = P (Rt, St)} ⊂ X̄. (5)
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In addition to the system level design goal, there is also a local conservation
restriction. For the community token supply, the total agent holdings at time t
cannot exceed the available supply. Letting st denote the vector of community
tokens held by all agents (s1,t, . . . , sn,t), we have

VS(st, St) :=

n∑
a=1

sa,t − St ≡ 0. (6)

Definition 10. The agent-level configuration space, X̂C is a (3n − 1)-
manifold, created by enforcing the conservation constraint VS(st, St) = 0 on
the 3n-dimensional agent-level state space

∏
a X̂a:

X̂C := {{(ra,t, sat , pa,t) ∈ Xa}na=1 |
n∑
a=1

sa,t = St} ⊂ X̂. (7)

Note that there is also an inherent asymmetry between the reserve currency
and the community token. Community tokens cannot be introduced or removed
without doing so through the bonding curve, meaning that community tokens are
internal to the system. By contrast, the reserve currency can be introduced to or
removed from the system without recourse to an internal mechanism—although
the reserve currency is assumed to be globally conserved (when considering its
holdings outside of the system), it is not locally conserved and is thus external to
the system. The bonding curve then takes the role of interface between the two
value systems, with one broader in scope (where the reserve currency originates)
and one narrower in scope (where the specialized community token is used).

Definition 11. The configuration space, XC is a 3n-manifold, which is the
Cartesian product of the system-level and agent-level configuration spaces.

XC := X̂C × X̄C ⊂ X = R3n+3
++ (8)

Observe that the configuration space effectively pastes together multiple config-
uration spaces. In this example, the agent-level and system-level configurations
are combined, but this method is more broadly applicable for combining systems
in a predictable way. For example, in [30] the bonding curve is augmented with
a funding pool as part of the system-level state. While this introduces additional
complexity, it is managed through combining the systems in a manner which
provably preserves the desired invariant properties.

3.2 Mechanisms

In order to arrive at the laws of motion for the system, it is necessary to charac-
terize the specific bonding curve mechanisms for reserve currency and community
token dynamics. In addition, we include a specification of admissible agent ac-
tions, to close the feedback mechanism between these actions and the resulting
realized signal process. We continue to use [30] as our reference in what follows.
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Definition 12. The Bond-to-Mint mechanism takes a system-level state x̄t =
(Rt, St, Pt) and an agent a’s action, given by a bonded quantity ∆Rt := ra,t −
ra,t+1 ≥ 0 such that ra,t+1 ∈ R++. Quantity ∆Rt is reserve currency transferred
to the bonding curve, and returns the state xt+1 such that

(Rt+1, St+1, Pt+1) =

(
Rt +∆Rt,

κ
√
V0(Rt +∆Rt),

κ(Rt +∆Rt)
κ
√
V0(Rt +∆Rt)

)

and the associated updates to the agent-level state x̂a,t are given by,

(ra,t+1, sa,t+1, pa,t+1) =
(
rt −∆Rt, sa,t + κ

√
V0(Rt +∆Rt), ga(xt+1, εt)

)
and (ra′,t+1, sa′,t+1, pa′,t+1) = (ra′,t, sa′,t, ga′(xt+1, εt) for all agents a′ 6= a where
ga is a private mapping for agent a and εt is an exogenous signal.

Definition 13. The Burn-to-Withdraw mechanism takes a system-level state
x̄t = (Rt, St, Pt) and an agent a’s action, given by a burned quantity ∆St :=
sa,t+1 − sa,t ≤ 0 such that sa,t+1 ∈ R++. Quantity ∆St is token supply removed
from the system, and results in the state xt+1 such that

(Rt+1, St+1, Pt+1) =

(
(St +∆St)

κ

V0
, St +∆St,

κ(St +∆St)
κ

V0(St +∆St)

)
and the associated updates to the agent-level state x̂a,t are given by,

(ra,t+1, sa,t+1, pa,t+1) =

(
ra,t +Rt −

(St +∆St)
κ

V0
, sa,t +∆St, ga(xt+1, εt)

)
and (ra′,t+1, sa′,t+1, pa′,t+1) = (ra′,t, sa′,t, ga′(xt+1, εt) for all agents a′ 6= a where
ga is a private mapping for agent a and εt is an exogenous signal.

Given these mechanisms, an agent’s action set U(xt, a) can be fully determined
from both agent-level restrictions and system-level conservation laws:

Definition 14. An action ut := (∆Rt, ∆St) is admissible if at time t:

ut ∈ U(xt, a) := Û(xt, a) ∩ Ū(xt) ∀t,

for agent a, where the agent-level admissibility condition is:

Û(xt, a) = {(∆Rt, ∆St) ∈ R2 | (ra,t −∆Rt, sa,t +∆St) ∈ R2
++}

and the the system-level admissibility condition is

Ū(xt) = {(∆Rt, ∆St) ∈ R2 | (Rt +∆Rt, St +∆St) ∈ R2
++,

V (Rt +∆Rt, St +∆St) = V (Rt, St)}.
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Fig. 3: An agent’s view of their admissible actions given by the bonding curve.

3.3 Price Estimation

The bonding curve system is presented with a sequence of observations associated
with the actions ut = (∆R,∆S), from which sample prices P̂t = ∆R

∆S , referred to
as realized prices, are computed. Due to the restrictions U(xt, a) on admissible
actions, P̂t is not necessarily a true sample of pa,t = ga(xt, εt) for the active agent
a. Assuming agent a is acting at time t and that the mapping ga accounts for
any private signals and utility functions (include discounting), the sample price
P̂t may be interpreted as arising from an agent level constrained optimization,
for example:

ut = arg min
(∆R,∆S)∈U(xt,a)

‖∆S ga,t(xt, εt)−∆R‖. (9)

Due to the dimensional restrictions in the configuration space, the admissible
ut for agent a lies within an open interval embedded in the plane (ra, sa), as
shown in Figure 3. It suffices for agent a to search this interval for their pre-
ferred posterior state, and to choose ut = (ra,t−ra,t+1, sa,t+1−sa,t) accordingly.
Whether or not ut is treated as a strategic action, as in (9), the curvature κ > 1,
implies that every point in the open interval U(xt, a) is uniquely characterized
by the price P̂t = ∆R

∆S . Furthermore, the estimator Pt = G(xt) = κRtSt is a critical

point where P̂t > Pt will always call for burning, and P̂t < Pt will always call
for bonding (see [30], Lemmas 1 and 2). Also from [30], the posterior spot price
always decreases for burn actions, and always increases for bond actions. Thus it
is guaranteed that the update directions match, that is (Pt+1−Pt)(P̂t−Pt) ≥ 0
when any agent a takes an action ut at time t.

Combining this machinery with the assumption that agents act directionally
aligned with their preferences (ga(xt, εt) − Pt)(P̂t − Pt) > 0, the groundwork
is laid for deriving estimation error bounds of the form ‖ga(xt, εt) − G(xt)‖ =
‖pa,t − Pt‖ ≤ ξ‖P̂t − Pt‖ ∀a∀t, with minimal assumptions regarding the agents.
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As a first step we proceed next to computational experiments, which test the
input-output response dynamics of the bonding curve system; in particular we
compare the estimator Pt to sample sequences P̂t and the associated (unique)
actions ut ∈ Ū(xt). Estimation error is given by et = ‖P̂t − Pt‖∀t.

Fig. 4: Block Diagram representation of the input-output response dynamics for
the bonding curve, viewed as an price estimator.

4 Price Estimator Response Dynamics

Consider a sequence of realized prices P̂t; for any prior system-level state x̄t, there
is a unique ut = (∆Rt, ∆St) satisfying ∆StP̂t = ∆Rt provided that P̂t > Rt/St.
The price Rt/St, also called the floor price, is the ratio of reserve-to-supply, and
represents the realized price of liquidating the bonding curve at any time t. It
thus acts as a lower bound for all realized prices P̂t. By restricting attention to
the sequence P̂t, it is possible to analyze the signal processing properties of the
bonding curve using only the system-level trajectory x̄t.

Definition 15. The driving process P generates a sequence of price samples
P̂t satisfying the condition that P̂t >

Rt
St

for all t.

The input-output response dynamics of the bonding curve system are con-
structed by comparing the inputs P̂t to the outputs Pt for deterministic wave-
forms as well as non-deterministic input signals P̂t, given a particular charac-
terizations of the bonding curve discrete event game. Figure 4 shows the block
diagram for the experimental apparatus to follow.
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4.1 Experimental Apparatus

To illustrate the impact on Pt of different driving processes, three determinis-
tic signals are defined: a Square-Wave, a Triangle-Wave and a Sine-Wave. To
capture stochastic effects, a Martingale stochastic process is also introduced.
These simple signals abstract away from the complexity of possible inputs P̂t,
while simultaneously acting as a starting point for the analysis of a broad range
of feedback mechanisms caused by modeling agent behavior as endogenous as
in agent-based modeling [2]. The deterministic signals can be characterized by
wavelength λ, amplitude A and phase φ, for time t ∈ {0, . . . 4000}, and are
described using the functional forms in Table 1.

Waveform Driving Process P Restriction

Square-Wave P̂t(t, λ, A, φ) = B +A1{((t−φ) mod λ)<λ/2} B > A

Triangle-Wave P̂t(t, λ, A) = B + 2A
λ

∣∣((t− φ) mod λ)− λ
2

∣∣− 2A
4

B > 2A
λ

Sine-Wave P̂t(t, λ, A, φ) = B +A sin
(
2πt−φ
λ

)
B > A

Random Walk P̂t(t, µ, σ) = (1 + δt)P̂t−1 where δt ∼ N(µ, σ) µ = 0

Table 1: Driving process functional forms for numerical experiments

Our experiments use the bonding curvature parameter κ = 2 and the system is
initialized with a community token supply S0 = 1000000 and reserve currency
units R0 = 50000, resulting in an initial price P0 = 0.10 reserve units per token
and an invariant V̄ = V0 = 20000000. The deterministic driving functions are
taken with φ = 0, B = P0 and λ = 2000. Amplitude A takes values P0

2 , P0

100 ,

and P0

2 for the Square-Wave, Triangle-Wave and Sine-Wave, respectively. For the

Random Walk, an initial condition P̂0 = P0 is applied, and the percent change
in P̂0 is drawn from a Gaussian distribution with mean µ = 0 and variance
σ = 0.05. Additionally, a 10-run Monte Carlo experiment was executed on the
Martingale case for each σ ∈ {0.1/2K |K = 1, . . . 10}, totaling 100 experiments.

4.2 Numerical Results

The Square-Wave response in Figure (5a) shows that the step response is tightly
tuned, resulting in a large overshoot but remaining stable, oscillating and con-
verging quickly. This behavior is characteristic of a high gain proportional con-
troller. The Triangle-Wave (5b) and Sine-Wave (5c) signals are equally reminis-
cent of such a controller; the Triangle-Wave exhibits steady state error during
the ramp and the Sine-Wave tracks most closely at the peaks and troughs. In
the Random Walk case (6a) tracking behavior is observed, but the error radius
appears large. Despite the high frequency noise, the error does not appear to
accumulate, and does appear to remain within a ball roughly on the order of

3σ, likely an artifact of the random walk whereby ∆P̂t
P̂t
∼ N(0, σ) for all t. This

research suggests that other systems might be designed to exhibit properties of
alternative estimators such as a Kalman filter, [20].
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(a) Square-Wave

(b) Triangle-Wave

(c) Sine-Wave

Fig. 5: Summary of response dynamics and estimation error for the discrete case
experiments in Section 4.1. Single trajectories are shown for (a) to (c).
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(a) Random Walk

(b) Repeated Martingale Param Sweep

Fig. 6: Summary of response dynamics and estimation error for the stochastic
case experiments in Section 4.1. Figure (b) shows the distribution of relative
estimation errors for various σ-variance Martingales (a).
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5 Conclusions & Future Work

The novel equipment provided by dynamic games is the system-level state, and
the ability to define and enforce a configuration space that is a proper subset
of the state space using mechanism design techniques related to state feedback
control. Applying estimation and control-theoretic principles to token bonding
curves, analytical groundwork was developed to characterize the relationship be-
tween realized prices and spot prices, as well as to posit an estimation bound
relating the spot price and the agents’ hidden preferences. Numerical experi-
ments demonstrated the signal processing characteristics of the bonding curve,
and provide further evidence that expanding the discrete event game machinery
and its associated estimation capabilities will facilitate new tools for practical
mechanism design, with a focus on cryptoeconomic and cyber-physical systems.

Our ongoing research focuses on the introduction of strategic agents with a
variety of assumptions. To align with the canonical notion of a ‘rational’ agent,
one considers solving for a stochastic optimal controller relative to the agent’s
private objectives and signals, [3]. It is equally reasonable to apply boundedly-
rational strategies, as well as to apply various heuristics derived from decision
theory, behavioral economics or simply inferred from data. A strength of our
framework is the avoidance of ‘baking’ a model of decision-making into the game
framework itself.

In addition to mechanism design, discrete event games may be used for deci-
sion policy identification. Provided with a basis for parameterized agent strate-
gies it is plausible to infer the most likely composition of strategies from observed
game dynamics using methods from system identification, [16].

In pursuit of this synthesis of theoretical and data-driven models, the com-
plex adaptive dynamics computer aided design framework cadCAD has been
developed as an open source python package, [4]. Our research team uses cad-
CAD alongside scientific python packages such as numpy, scipy, scikit-learn and
networkx. For further information please see the cadCAD documentation ac-
companying the package.
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