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ABSTRACT
Proximity scaling methods such as multidimensional scaling represent objects in a low-dimensional con�g-
uration so that �tted object distances optimally approximate object proximities. Besides �nding the optimal
con�guration, an additional goal may be to make statements about the cluster arrangement of objects. This
fails if the con�guration lacks appreciable clusteredness. We present cluster optimized proximity scaling
(COPS), which attempts to �nd a con�guration that exhibits clusteredness. In COPS, a �exible parameterized
scaling loss function that may emphasize di�erentiation information in the proximities is augmented with
an index (OPTICS Cordillera) that penalizes lack of clusteredness of the con�guration. We present two
variants of this, one for �nding a con�guration directly and one for hyperparameter selection for parametric
stresses. We apply both to a functional magnetic resonance imaging dataset on neural representations of
mental states in a social cognition task and show that COPS improves clusteredness of the con�guration,
enabling visual identi�cation of clusters of mental states. Online supplementary materials are available
including an R package and a document with additional details.
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1. Introduction

Proximity scaling (PS) describes a family of data analysis tech-
niques which are used to represent (multivariate) proximities
of N objects (points or vectors) in a space of dimensional-
ity M,M < N (typically M � N). This representation„
called con�guration„is found so that �tted distances in the
con�guration optimally approximate the proximities as de�ned
by some objective function. The prototypical PS procedure
is multidimensional scaling (classical metric MDS; Torgerson
1958). Overviews of di�erent MDS �avors can be found in
Kruskal and Wish (1978), Cox and Cox (2001), and Borg and
Groenen (2005). We focus on single input matrix MDS meth-
ods and distinguish between traditional MDS models, where
the objective is to estimate a con�guration so that related
distances approximate observed proximities (or a monotonic
transformation of them) and the wider family of PS proce-
dures that may augment the objective function of MDS in
some way.

PS methods are typically used for visualization of a proximity
matrix in low-dimensional space. The resulting plot is then
explored, frequently with the goal of deriving statements about
discrete structures (•clustersŽ) of objects. This fails, however, if
it is di�cult to visually make out groups of objects in the plot„
then the con�guration or its visualization lacksclusteredness.
We found this situation to not be uncommon for real data„
illustrative examples of this are given in the top le� panel of
Figure 1, or in Mair, Rusch, and Hornik (2014) and Buja and
Swayne (2002).

CONTACTThomas Rusch thomas.rusch@wu.ac.atCompetence Center for Empirical Research Methods, WU (Vienna University of Economics and Business), 1020
Vienna, Austria.

Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JCGS.

In this article, we address this unwanted situation by present-
ing an approach to increase clusteredness of the con�guration
(coined •c-clusterednessŽ) which enables clearer visualization
and easier visual exploration of any type of density-based dis-
crete structures in the con�guration. We call the procedure clus-
ter optimized proximity scaling (COPS). Essentially we suggest
to allow for some local distortion of the MDS con�guration
to achieve a more clustered representation. The represented
distances in COPS are penalized versions of the MDS distances
with the penalization acting much like a local attractor. COPS is
thus a complementary procedure to MDS that allows for trans-
formations in the MDS objective to emphasize proximity dif-
ferences and additionally considers c-clusteredness for �nding
the optimal con�guration. The objective function underlying
COPS can be used in two ways: Either as the objective function
for directly �nding a con�guration for given transformations
(COPS-C) or as the objective function to select parameters
for nonlinear dimensionality reduction (P-COPS). We operate
in a completely unsupervised, exploratory context and only
look at how objects are arranged in the con�guration. Like
MDS we only utilize internal information and as little prior
information as possible (this applies particularly to not using
information from partitional clustering). The primary goal of
our proposal is to provide a faithful visualization/con�guration
that is more clustered compared to what a standard MDS
would provide.

At the core of our suggestion lies the idea of utilizing a
�exible MDS objective in the con�guration augmented with
structural considerations to achieve a faithful representation of
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Figure 1.Con�gurations (Procrustes adjusted) of di�erent ratio COPS-C (left) and interval COPS-C (right column) models for the mental states dataset. From top to bottom
rows the weights werev1 = 1,v2 = 0,v1 = 0.99,v2 = 0.01, andv1 = 0.95,v2 = 0.05. The points have low transparency to illustrate the e�ect of some points
accumulating very closely together. The MDS reference con�guration(v1 = 1) as well as the object position changes is plotted in light gray in each COPS-C con�guration.

proximities with certain e�ects in the con�guration. Flexible
MDS objectives result from incorporating transformations to
bring out more structure, as, for example, in Takane, Young, and
De Leeuw (1977), Ramsay (1977), Buja and Swayne (2002), Buja
et al. (2008), Groenen and De Leeuw (2010), De Leeuw (2014),
Tenenbaum, De Silva, and Langford (2000), Chen and Buja

(2009), Chen and Buja (2013), Mair, Rusch, and Hornik (2014),
Groenen, De Leeuw, and Mathar (1996), and Vera, Heiser, and
Murillo ( 2007). In all these approaches, the transformations are
usually chosen ad hoc. One contribution of this article is to
suggest a procedure for �nding the transformation parameters
in a systematic fashion. For this we build on ideas of letting a �t
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independent criterion guide the selection of hyperparameters
for the MDS objective (Akkucuk and Carroll2006; Chen and
Buja 2009, 2013) and extend them by treating the hyperpa-
rameter search as a systematic procedure in a multi-objective
optimization sense.

The other main contribution is to augment an MDS badness-
of-�t measure with clusteredness considerations and to use
the augmented objective for �nding a con�guration directly.
This variant follows the tradition of augmenting dimension-
ality reduction objective functions with additional criteria to
get a clustered visualization. In the context of MDS and for
available external class label information, Kiers, Vicari, and
Vichi (2005) or Witten and Tibshirani (2011) proposed such
augmented objective functions. Relying only on internal infor-
mation, Heiser and Groenen (1997) introduced cluster dif-
ferences scaling which was extended to spatial constraints
by Vera, Macías, and Angulo (2008). De Soete and Carroll
(1994) suggested reducedk-means and Vichi and Kiers (2001)
developed factorialk-means, both of which can be seen ask-
means/classical scaling hybrids. These methods use augmenta-
tion related to ak-means criterion. Conversely, Vera, Macías,
and Heiser (2009) formulated a probabilistic �nite mixture
model for clustered MDS which is further extended to a latent
class model with spatial constraints in Vera, Macías, and Angulo
(2009). This line of work uses a normal/log normal model-
based clustering de�nition. Similar in spirit to the latter, we
also use density-based information about clusters but use the
de�nition laid out in Ester et al. (1996). This allows for alter-
native assumptions about what constitutes a cluster in the con-
�guration compared to centroid based methods or �nite mix-
ture models„most notably by allowing for arbitrary cluster
shapes, di�erent variance or density within clusters and no
need for prespecifying the number of clusters„while still being
applicable to most situations where the other methods are well
suited.

This article is organized as follows: It starts with a description
of MDS and PS, introducing various objective functions in
Section 2. In Section 3, we turn to discussing aspects related
to the notion of clusteredness, including an index that cap-
tures it. In Section 3.2, we elaborate on how transformations
in stress-type objective functions can be used to increase clus-
teredness and give conditions for the transformations to have
the desirable e�ects. The suggestions will be combined into
COPS inSection 4. Two variants of COPS will be presented,
one for �nding the optimal con�guration (COPS-C) and one for
�nding transformation parameters (P-COPS), inSections 4.2
and 4.3, respectively.Section 4.4discusses optimization and
computation for COPS.Section 5describes results from a sim-
ulation study into the performance of COPS. Subsequently,
the use of both variants of COPS will be illustrated inSec-
tion 6. The so�ware used for COPS is presented inSection 7.
Concluding remarks can be found inSection 8. The R pack-
agecops as well as the code �le to reproduce the article
are provided as supplementary materials. An additional sup-
plementary document describes the •Adaptive Luus-JaakolaŽ
algorithm, gives technical details on optimization, compares
COPS to related methods and explicates further on cluster
recovery.

2. Proximity Scaling

We introduce notation and a general framework of least squares
PS in this section, and show how di�erent popular variants of
MDS can be incorporated into this framework.

Let � be anN × N matrix of observed nonnegative proxim-
ities between objectsi, j with elements� ij , with � ii = 0 (values
closer to 0 stand for closer proximity, as in a dissimilarity mea-
sure). For scaling we use the derived matrix� � = f (�) with
elements1 � �

ij . � � is symmetric. We callf : � ij �� � �
ij a proximity

transformation function. This function can be parameterized
with � f , sof : (� ij , � f ) �� � �

ij and then� �
ij = f (� ij |� f ).

The problem that PS solves is to locate anN × M matrix X
(the con�guration) with row vectors (object representations or
points)xi , i = 1,. . . ,N in low-dimensional spaceRM (M < N)
in such a way that transformationsd�

ij (X) = g(dij (X)) of the
pairwise distancesdij (X) in the con�guration approximate the
� �

ij as closely as possible:d�
ij (X) = g(dij (X)) � � �

ij = f (� ij ),
optionally subject to some other conditions. Thedij (X) usually
are Minkowski distances (p > 0)

dij (X) = d(xi,xj) = || xi Š xj||p =

�
M�

m= 1

|xim Š xjm|p
� 1/ p

,

i, j = 1,. . . ,N, (1)

typically the Euclidean for whichp = 2. We callg : dij (X) ��
d�

ij (X) a distance transformation function, possibly parameter-
ized in terms ofg : (dij (X), � g) �� d�

ij (X), so thatd�
ij (X) =

g(dij (X)|� g). The functionsg(·) andf (·) are monotonic.
With an optional criterion for a suitable •structural quality

levelŽ ofX, �( X), anX yielding a good approximationD� (X)
with elementsd�

ij (X) to the matrix� � can be found by optimiz-
ing a PS objective function� PS,

� PS(X|� ) = L
�
� � = [ fij (� |� f )],D

� (X) = [ gij (D(X)|� g)],

w�
ij = h(wij |� h), �( X)

�
, (2)

which provides an aggregate measure of how closelyD� (X)
approximates� � and, optionally, weightswij that may be subject
to a transformationh(·) governed by� h to yieldw�

ij . All transfor-
mation parameters used2 are collected together in the parameter
vector� = (� f , � g, � h). If we need to emphasize that a� PS(X|� )
is normalized, we refer to it as� �

PS(X|� ).
The objective function is then minimized to �nd the optimal

vectorsx�
1, . . . ,x�

N, that is,

X� = arg min
X

� PS(X|� ). (3)

This can be achieved in various ways depending on the nature of
� PS(X|� ), for example, majorization (De Leeuw1977), gradient
descent algorithms (Buja and Swayne2002), or global optimiza-
tion metaheuristics (Vera, Heiser, and Murillo2007).

1For what follows we assume a normalization of
�

i< j w�
ij �

� 2
ij = 1 for

transformed and also untransformed proximities unless they are used as
arguments to the transformation function. So in� �

ij = f (� ij ), � �
ij is normal-

ized but � ij is not. If we use� ij directly they are normalized as well.
2We acknowledge that not everyone agrees with choosing di�erent trans-

formations for distances and proximities. In that case we point out that our
framework does not preclude simply choosing the same one for both.
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A popular and �exible family of objective functions� PS(X|� )
is the transformation-based stress family (Kruskal1964), where
the loss is quadratic and no�( X) is used. The transformation-
based stress family can be formulated as

� stress(X|� ) =
�

i< j

w�
ij

�
d�

ij (X) Š � �
ij

� 2
(4)

=
�

i< j

h(wij |� h)
�
g

�
dij (X)|� g

	
Š f (� ij |� f )

	 2 .

Thewij � 0 are �nite weights (o�en known a priori), withwij =
0 if the entry is missing.

The transformations in (4) enable one to express a rich class
of popular stresses: In ratio MDSg(·) is the identity functionI(·)
andf (� ij ) = | b|� ij . In interval MDSg(·) is the identity function
I(·) and f (� ij ) = a + b� ij � 0. Settingw�

ij = (
�

ij d� 2
ij (X))Š1

leads to stress-1 (Kruskal1964), w�
ij = (

�
ij � � 2

ij )Š1 to explicitly

normalized stress,w�
ij =



�

ij

�
d�

ij (X) Š d̄
� 2

 Š1

leads to stress-

2 (a stress to avoid degeneracies; Kruskal and Carroll1969),
w�

ij = � Š1
ij to Sammon stress (Sammon1969), w�

ij = � Š2
ij to

elastic scaling (McGee1966). Speci�c choices forf (·) andg(·)
in (4) further lead to nonmetric (ordinal) MDS (Kruskal1964)
if f (·) is any rank-order preserving function, s-stress (Takane,
Young, and De Leeuw1977) with � �

ij = � 2
ij and d�

ij (X) =
dij (X)2, multiscale transformation (Ramsay1977) with � �

ij =
log(� ij ) andd�

ij (X) = log(dij (X)), generalized stress (Groenen,

De Leeuw, and Mathar1996) with � �
ij = f (� 2

ij ) and d�
ij (X) =

f (dij (X)2), r-stress (De Leeuw2014) with � �
ij = � ij andd�

ij (X) =
dij (X)2r , or the suggestion by Chen and Buja (2013) who used
Box…Cox type transformations on �tted distances and observed
proximities.

For our case, a particularly interesting stress with parameter-
ized transformations was essentially already introduced by Buja
et al. (2008) where� is a three-dimensional parameter vector,
� = (� , � , 	) 	 with � , 	 
 R, � 
 R+ and the transformations
areg(dij (X)|� ) = d�

ij (X) = dij (X)� , f (� ij |� ) = � �
ij = � �

ij and
h(wij |� ) = w�

ij = w	
ij . Hence,

� stress(X|� ) = p-stress(X|� ) =
�

i< j

w	
ij

�
dij (X)� Š � �

ij

� 2
. (5)

We call thisp-stress(for power stress) and the resulting MDS
variant power stress MDS (POST-MDS). This p-stress encom-
passes many of the popular stress functions listed above.3 Spe-
cial care must be taken if� = 0 which would nullify the
dissimilarity information, so we suggest to choose� 
 R�= 0
unless the degenerate solution is somehow of interest (e.g., for
assessing qualities of a solution for constant dissimilarities, like
using this as a null hypothesis).

The p-stress in (5) is a stress with three transformation
parameters and because of the distance transformation is not
easy to optimize. When using the proximities as weights,
so wij = � ij and allowing a free parameter for a power

3We point out that wij are typically chosen for theoretical reasons, so while (5)
allows a transformation of the assumedwij to be estimated it is not meant
to preclude restricting the transformation to the identity function (	 = 1).

transformation of the weights (
 ), it is possible to approximate4

p-stress by a stress with two transformation parameters that
can be optimized with standard MDS algorithms. We call this
approximate p-stress, orap-stressfor short. Speci�cally, we
approximate (5) by

� stress(X|� ) = ap-stress(X|� )

=
�

i< j

� 	
ij

�
� �

ij Š � (�(� Š1)/�)
ij dij (X)

� 2

=
�

i< j

� (	 + 2�( 1Š1/�))
ij

�
� (�/�)

ij Š dij (X)
� 2

=
�

i< j

� 

ij

�
� �

ij Š dij (X)
� 2

(6)

with � = (� , 
) where the relation to p-stress is that
 =
	 + 2�( 1 Š 1/�) and� = �/� . The approximation of p-stress
by ap-stress works well in cases when for thexi,xj for which
wij is large, the error� �

ij Š dij (X)� is small, so thatdij (X)� is

approximated reasonably well by� �
ij and, equivalently,dij (X)�

can be approximated well bydij (X)� (�(� Š1)/�)
ij . Optimization of

ap-stress is more straightforward than of p-stress, for example,
one can use SMACOF (De Leeuw1977) and its optimized
implementations, and it has one hyperparameter less.

In our framework both (5) and (6) have many possible
parameter combinations so we mention some typical setups:
For p-stress� and � are typically restricted to be equal; when
�xed, typical values are 1 (metric MDS) or 2 (ALSCAL). If
needed, di�erent transformations for distances and dissimilar-
ities can be used which is mainly interesting to avoid nearly
degenerate solutions, for example, from nearly noninformative
dissimilarities as laid out inSection 3.2. Thew	

ij allows to weight

the residuals(dij (X)� Š � �
ij ) di�erently. A popular choice is to

setwij = � ij ; then negative/positive	 places more emphasis
on reconstructing smaller/larger dissimilarities as compared to
using 	 = 0 (which is traditional MDS without weights).
This allows nonlinear mappings like Sammon mapping (	 =
Š1) or elastic mapping (	 = Š 2) or to reconstruct the local
neighborhood around a point (setting high negative values for	
for large� ij ). Thewij can be used to encode nonlinear mappings,
prior information, missingness, or restrictions. For ap-stress
� = 1 results in metric MDS, so any� �= 0 behaves like a
power transformation of dissimilarities would in metric MDS.
The
 plays a similar role as	 in p-stress whenwij = � ij placing
emphasis on smaller dissimilarities for
 < 0 or on larger
dissimilarities for
 > 0 and can also be used to construct
nonlinear mappings (Sammon mapping with
 = Š 1, elastic
mapping with
 = Š 2).

We explicate why p-stress or its approximation is of particu-
lar interest to us inSection 3.2.

3. Clusteredness of Con�gurations

Our suggestions in this article aim at providing a way out in
the undesired situation where an MDS con�guration shows
an arrangement that makes it di�cult to visually perceive

4This approximation was suggested by an anonymous reviewer.
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groupings of the objects, by producing a more structured con-
�guration that arranges the objects in a more clustered fashion.

We refer to the property of a con�gurationX that cap-
tures the degree of how clustered the objects in the con�g-
uration appear (the con�guration•s clusteredness structure) as
c-clusteredness. Essentially c-clusteredness is a property of a
con�guration related to its appearance„that is, of the pairwise
distances between objects, their relation as well as the density
of the object arrangement„where, starting from a result with
no discernable c-clusteredness, c-clusteredness increases in the
following situations: In the con�guration (i) a (speci�ed) min-
imum number of represented objects accumulate close to each
other, (ii) the represented objects accumulate increasingly closer
together, (iii) the distances between the accumulations increase,
or (iv) the number of accumulations increases.

3.1. Measuring C-Clusteredness

Our concept of c-clusteredness is consistent with the notion
of clusteredness as de�ned by Rusch, Hornik, and Mair (2018)
who proposed a de�nition of density-distance clusteredness of
a matrix X in RM for a minimum numberk of points that
comprise a cluster or point accumulation (2� k < N)
and an index„the OPTICS Cordillera, OC�(X)„to unidimen-
sionally measure it. The larger the index value is, the more c-
clusteredness we �nd.

More speci�cally, let there be an orderingR(X) =
(x�( i))�( i)= 1,...,N of theN original row vectorsxi, (i = 1,. . . ,N)
in X. R(X) is a permutation of the rows ofX. The position
of object xi in the ordering R(X) is �( i). R(X) is obtained
based on the distance matrix of objects inX by the OPTICS
algorithm (Ankerst et al.1999), which provides the bijective
algorithmic mapping� : {1,. . . ,N} � { 1,. . . ,N}. OPTICS
further augmentsR(X) with each object•srepresentative reach-
ability distance, r�

�( i) , which is not expressible in closed form;
see Ankerst et al. (1999) for more. This augmented ordering
contains all information about every clustering level of points
in a data matrixX up to a maximum radius of around each
point.

Let dmax denote a maximum reference distance between
clusters for maximal clusteredness, mindij � dmax �  . In
the OC�(X) the dmax winsorizes ther�

�( i) (i.e., allr�
�( i) > dmax

are given the valuedmax) to robustify it to large outliers in
the con�gurations. An optional parameter for OPTICS and the
derivation we introduce subsequently in (7),  , can be used to
de�ne regions with noise points (i.e., the density of points is
too low) and to improve runtime for OPTICS. For our purpose
we would normally just have it so that it is large, for example,
 = maxdij (X), but we allow it as an optional parameter.

Then the normalized OPTICS Cordillera (Rusch, Hornik,
and Mair2018) is

OC�
k, ,q(X) =

� � N
�( i)= 2 |r�

�( i) Š r�
�( i)Š1|q

dq
max ·

�� NŠ1
k

�
+

� NŠ1
k

�	

� 1/ q

, (7)

whereq � 1 is an optional hyperparameter that controls how
the reachabilities are aggregated. We suggestq to match the
index space to the space of the �tted distances, soq = p, for
example,q = 2 if Euclidean distances are used. The observed

OC�
k, ,q(X) for a given con�gurationX gives its position in the

interval [0, 1] as the continuum spread by no c-clusteredness
(OC�

k, ,q(X) = 0) on the one end and maximal c-clusteredness
(OC�

k, ,q(X) = 1) on the other. Going forward we will use
� = (k,  ,q) as shorthand for the parameters of the OC�.
They govern how the clusteredness is to be evaluated and
are a situative decision. C-clusteredness measured this way is
monotonically nondecreasing if either (i) the distances between
clusters increase, (ii) the objects cluster more densely, (iii) the
number of points of accumulation increase, or (iv) the object
positions expand radially. See Rusch, Hornik, and Mair (2018)
for details.

3.2. Inducing C-Clusteredness by Transformations

We advocate our method for situations where an MDS gives a
con�guration that is not very clustered and where that is not
wanted.

This typically happens when MDS does not have enough
di�erentiation information in the proximities to produce a
clustered con�guration. An example of this is indi�erentiation
(Buja and Swayne2002), which produces an artifact that we
call the sphere embedding projection phenomenon (SEPP; see
De Leeuw and Stoop1984; Buja et al.1994; Buja and Swayne
2002), where the objects in the con�guration get arranged on an
embedded disk that is more densely populated at the boundary
and sparsely populated toward the center. Approximate indif-
ferentiation is characterized by proximities that are distributed
with di�erent but very close individual expectations, so|E(� ij )Š
E(� kl)| < � max,  i �= j,k �= l with � max � 0 being small,
approaching perfect indi�erentiation in case of� max � 0. The
extreme case of perfect indi�erentiation occurs if all realized
proximities are exactly equal,� ij = µ > 0  i �= j. This
artifact was analyzed in detail by Buja et al. (1994). While perfect
indi�erentiation is rare, approximate indi�erentiation can crop
up easily. The important practical di�erence is that with approx-
imate indi�erentiation there actually is usable information that
can be utilized by the MDS.

We can emphasize the di�erentiation information by apply-
ing transformations to the proximities and/or the �tted dis-
tances (Borg and Groenen2005) in our case using di�er-
ent h(·), g(·), and f (·) to �nd con�gurations that show dif-
ferent degrees of clusteredness based on the same� . If c-
clusteredness increases by using such transformations, we call
the transformationsc-clusteredness inducing. Transformations
are c-clusteredness inducing under certain conditions.

First, we can look at transformations that exaggerate large
di�erences in expectations relatively more than small di�er-
ences. This provides a way out for the problem characterized
by |E(� ij ) Š E(� kl)| < � max � 0, i, j andk, l. Lety,z denote
two quantities to be transformed. For a transformationl(·) to
emphasize di�erences in expected values, they should be chosen
so that|l(E(y)) Š l(E(z))| > |E(y) Š E(z)|, which„by a �rst
order approximation„tendentially gives a|E(l(y) Š l(z))| that
is larger than|E(y Š z)|.

Second, we can transform so thatP(|� �
ij Š � �

kl| > � max) �
P(|� ij Š � kl| > � max). This remedies lack of c-clusteredness
in cases characterized by|� ij Š � kl| < � max � 0  i, j and
k, l or Variability(� ij ) � 0 (e.g., the coe�cient of variation).
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One way of achieving this is to choose the transformation(s)
so that the distributionG of � � is more spread out than the
distributionFof � (in terms of nonparametric spread, Spread(·);
Bickel and Lehmann2012). This will increase the probability
that we �nd di�erences in transformed quantities that exceed
� max(Bickel and Lehmann2012, Theorem 2). The second condi-
tion is therefore that transformationsl(·) should be so that they
are strictly increasing and thaty� < y implies l(y�) Š l(y) �
y� Š y; then, if the distribution fory is F and for l(y) it is
G, G is more spread out thanF (Bickel and Lehmann2012,
Theorem 1).

The �rst two conditions of exaggerating (some of) the
(expected) di�erences to be larger than� max alone need not be
su�cient to remedy lack of c-clusteredness. A third condition
is that the transformation function should be •super-linearŽ to
induce c-clusteredness, that is, growing stronger than an a�ne
transformation. For example, if the function is smooth it should
be strictly convex.

One class of transformations is particularly well suited for
meeting the above criteria: the family of power transformations
applied to the proximity transformation function and the dis-
tance transformation function and the weights simultaneously
as in stresses with power transformations. For the desired e�ect
we can therefore choose a powera for two quantitiesy,z (either
distances or proximities) so that|E(y)aŠ E(z)a| > |E(y)Š E(z)|,
Spread(ya) > Spread(y) andya strictly convex.

4. Cluster Optimized Proximity Scaling

In this section, we present a PS framework that makes use
of the presented ideas and can e�ectively remedy lack of c-
clusteredness. We suggest to combine (i) scaling by an objective
function with c-clusteredness inducing transformations with
(ii) maximization of the normalized OPTICS Cordillera. We
coin this approach COPS. COPS is a multi-objective optimiza-
tion problem for which we use a scalarization approach. We
propose two variants of COPS, di�ering by how the objective
function is used: First, we augment a stress objective with the
OPTICS Cordillera and solve the augmented problem for given
hyperparameters for �nding a clustered con�guration. Second,
we use the combination of stress and the OPTICS Cordillera
as a criterion to select hyperparameters for a stress measure
which is then in turn used for �nding the optimal con�guration.
This way we de�ne the combination of stress function and
structural criterion as a nested procedure and suggest to conduct
systematic hyperparameter search with it.

We opted for presenting our ideas as a �exible, general frame-
work governed by various hyperparameters. This adds degrees
of freedom that are at the discretion of the researchers and
practitioners and cannot be anticipated in every detail; thus we
give guidance on instances that we deem reasonable and that
worked well for the speci�c applications that we looked at.

4.1. Cluster Optimized Stress

In COPS, we are interested in getting a good �t of the stress
measure while simultaneously also achieving a clustered appear-
ance in the con�guration. This can be taken as a multi-objective

optimization problem (Gunantara2018) between two compet-
ing objectives (minimizing badness-of-�t and maximizing clus-
teredness); a popular approach to handle this is to scalarize the
two competing objectives by a weighted linear combination.

Along these lines, the objective function at the heart of
COPS, which we callcluster optimized stress (copstress), is a
weighted linear combination of a dimensionless normalized
� -parameterized stress function to measure badness-of-�t5,
� �

stress(X|� ), and the c-clusteredness measure, OC�(X),

copstressv1,v2,� (X|� ) = v1 · � �
stress(X|� ) Š v2 · OC�

� (X) (8)

with v1,v2 
 R� 0 controlling how much weight should be given
to the stress part and OC�(X), respectively, and� being short-
hand for the hyperparameters of the OC�(X). This combination
needs both parts of the objective to be dimensionless.6 This is
the case for OC�(X) and also for any normalized stress measure
that is independent of the scale ofX, for example, explicitly
normalized p-stress:

� �
stress(X|� ) =

�
i< j w	

ij

�
dij (X)� Š � �

ij

� 2

�
i< j w	

ij �
2�
ij

. (9)

Using explicitly normalized stress also has the e�ect that the two
objectives of copstress are numerically on the same scale, which
means� �

stress(X|� ) 
 [ 0, 1]; OC�(X) is also
 [ 0, 1].
The �xed scalarization weightsv1,v2 determine the copstress

and express the performance priority given to the two objectives.
This begs the question how to set the scalarization weights.
In our framework, it is di�cult to ex ante provide a param-
eterization that will work well in every case, so we envision
them as a priori determined values used to trade-o� �t and c-
clusteredness in a way for them to be commensurable according
to a user•s utility function (utility based weighting). Note thatv1
andv2 are complementary and having two weights is redundant
but we deliberately allow this �exibility in our framework, so
weights can be set directly for any utility function. Removing
redundancy in the weighting is possible by, for example, a con-
vex combination with settingv2 = 1 Š v1 with 0 � v1 � 1. A
high relative value ofv2 is permissible in our framework, but in
our view it makes most sense to put most weight on the badness-
of-�t part (say, v1/ v2 � 4) because the higherv2 is in relation
to v1, the less faithful the representation due to emphasizing
the OC is, which will in the case ofv1 = 0 lead to a random
placement of theN points inN/ k bins on a regular grid.

Barring a utility function, the equal weights (v1 = v2 =
0.5), rank order centroid weights (v1 = 0.75,v2 = 0.25)
or rank sum weights (v1 = 2/ 3,v2 = 1/ 3) strategies can
be employed (Gunantara2018). In general, hyperparameters
like weights or transformations might also be derived from
what domain experts would judge as sensible for their domain.
Di�erent weightings can also be utilized to explore the trade-o�
between minimizing stress and maximizing c-clusteredness.

We point out that copstress (the weighted combination of
two dimensionless characteristics) is used as a computational
tool to tackle the multi-objective optimization, but that for

5We suggest to interpret the square root of the stress functions as� �
stress

(stress-1). We will do this subsequently for all numerical stress values.
6We thank an anonymous reviewer for alerting us to this.
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interpretation the numerical value of copstress is not very useful.
We recommend that a�er an optimal COPS solutionX� has
been found, interpretation should happen on the basis of the
two competing objectives making up the copstress individually:
the obtained (square root of the) stress for the con�guration,
� �

stress(X
� |� ), as well as the c-clusteredness value, OC�(X� ). The

former is amenable to any of the standard interpretations of
stress values (see, e.g., Mair, Borg, and Rusch2016).

The combined loss function can then be used in two ways
which we describe next. COPS-C allows to �nd a jittered con-
�guration with more c-clusteredness given� and scalarization
weights and P-COPS attempts to �nd an optimal� � yielding a
concrete MDS formulation that gives a con�guration showing
higher c-clusteredness for given scalarization weights.

4.2. COPS-C: Finding a Con�guration Based on Cluster
Optimized Stress

Here, we look at optimizing (8) directly for an explicitly nor-
malized stress function� �

stress(X|� ) given stress hyperparameter
vector�

� PS(X|� ) = copstress(X|� ) = v1 · � �
stress(X|� ) Š v2 · OC�

� (X),
(10)

with scalarization weightsv1,v2 
 R� 0. In this variant the
parameters� ,v1,v2 and� are all treated as given. We then need
to �nd

X�
copstress(� ) = arg minXcopstress(X|� ) (11)

For this variant, we recommend to use the convex combina-
tion v2 = 1 Š v1 with 0 � v1 � 1. For a given� if v2 = 0 the
result of (10) is the same as solving the respective stress problem.
Minimizing copstress forv2 > 0 jitters the con�guration
toward a more c-clustered arrangement, the strength of which
is governed by the values ofv1,v2.

If the � �
stress(X|� ) allows for di�erent transformation of dis-

similarities and distances (e.g., normalized p-stress), we suggest
to start from identical transformations. If need arises, for exam-
ple, to avoid a problem of near-indi�erentiation as described in
Section 3.2, one can exploit the �exibility of employing di�erent
transformations. For that case we point out that the con�gura-
tion may then represent a relation that is somewhat further apart
of the main aim in MDS of faithfully reproducing the dissimi-
larities by distances in a comparable space but may allow some
desired aspects to be revealed in a graphical representation.7

COPS-C can be used either for improving c-clusteredness
for a given initial MDS con�guration (which may then be only
locally optimal) or for looking for the globally near-optimal
COPS-C con�guration (with di�erent starting con�gurations,
see below).

4.3. P-COPS: Hyperparameter Optimization Based on
Cluster Optimized Stress

Let us writeX�
stress(� ) := arg minX � �

stress(X|� ) for the optimal
con�guration obtained from minimizing a normalized stress
function for a given transformation parameter vector� . For

7We thank an anonymous reviewer for this important point.

another variant of COPS, we �rst �nd a con�guration by mini-
mizing the stress part only and then use the obtained numerical
stress value plugged into (8) together with the numerical value
of OC�(X�

stress(� )) to conduct hyperparameter search over� .
We therefore use copstress in a pro�le method and call this
P-COPS. Here, we use copstress as a heuristic to guide stress
hyperparameter search instead of choosing the transformation
parameters ad hoc.

The objective function then becomes the pro�le version of
copstress (p-copstress)

p-copstress(� ) = v1· � �
stress

�
X�

stress(� )|�
	
Š v2·OC�

�
�
X�

stress(� )
	

(12)
and the optimization problem for hyperparameter optimization
is then to �nd

� � = arg min� p-copstress(� ), (13)

the optimal� for the stress family of interest and hyperparame-
ters employed.

The concrete� �
stress(X

�
stress(� )|� ) can vary; we think a good

default choice is ap-stress. Of the mentioned stress families, p-
stress is the most general concrete instance in our framework.
Note that using some� �

stress(X|� ) in (12) would allow for di�er-
ent transformation of dissimilarities and distances over which
optimization would happen. In that case for the same reasons
mentioned inSection 4.2we recommend to start with restricting
the transformations to be identical for both and only if need
arises, for example, to avoid a problem of near-indi�erentiation,
to optimize over di�erent transformations.

Without a clear utility function, we recommend a default
scalarization weighting for P-COPS that takes the stress value
as it is (v1 = 1) and scalarize so that p-copstress= 0 for the
scaling result with no transformation (� = � 0), that is,

v0
1 = 1, v0

2 =
� �

stress
�
X�

stress(� 0)|� 0
	

OC�
�

�
X�

stress(� 0)
	 , (14)

for example,� 0 = (1, 1, 1)	 for p-stress. Thus, an increase
of 1 in the stress measure (i.e., perfect �t to worst �t) can be
compensated by an increase ofv0

1/ v0
2 in c-clusteredness. Note

that if v2 = 0 then the result of (13) will only minimize the
stress part over con�gurations obtained from using di�erent� .

4.4. Optimization and Computation

4.4.1. COPS-C
Finding X�

copstress(� ) in COPS-C is a di�cult problem; the dif-
�culty of optimizing stress (which is smooth but not convex) is
further complicated by the OPTICS Cordillera which is based
on an ordering for discrete structures which may feature dis-
continuities. Section 1 in the supplementary document gives a
more thorough account on the copstress objective.

We propose to approach minimizing the objective locally
(say, for a given initial MDS solution) with a combination of
a general purpose solver to obtain a good local solution for
(10) and further locally improve it by optimization with a trust-
region or a quasi-Newton method. In the supplementary doc-
ument, we show that the combination of the pattern search
method of Hooke…Jeeves (hjk; Hooke and Jeeves1961) with
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the trust region method NEWUOA (Powell2006) has good
theoretical properties and good empirical performance.

If a global optimum is sought we suggest to further combine
the local solver with di�erent starting con�gurations (multi-
start method, see Borg and Mair2017). Smart starting con�gu-
rations would include the Torgerson scaling solution or starting
from centroids of a clustering of the MDS con�guration.

For copstress used in COPS-C only relative proximities are
of interest as both parts of the objective are dimensionless (if
dmax in OC�(X) is scaled accordingly). Thus, when using (semi-
)norms as con�guration distances this allows for an arbitrary
scaling factor ofX which can be used for improving numerical
stability and plotting, for example, by scalingX so that the
column with largest spread has a standard deviation of 1.

4.4.2. P-COPS
There are some considerations to take into account when using
P-COPS. First, for a �xeddmax, the OC� is sensitive to rescaling
and may increase whenX is more spread. We suggest to scale
so that di�erentX�

stress(� ) are comparable in terms of spread, for
example, dividing by the standard deviation of the most spread-
out dimension or employing a Procrustes transformation.

Second, �nding (13) is again challenging. In the formula-
tion as a pro�le method, however, the problem can be consid-
ered as a nested optimization problem where we �rst solve for
X�

stress(� ) for a given� based on the stress part only, evaluate
p-copstress(� ) and then repeat this for di�erent� to �nd an
optimal � � (the stress hyperparameters). This enables us to
utilize tailored algorithms for �nding theX�

stress(� ) and using
metaheuristics to optimize over� . This also has the e�ect of pri-
oritizing optimization of the inner MDS problem over �nding a
global minimum for the copstress.

An outline for an algorithm is thus:

1. Start with an initial� .
2. Given� , �nd arg minX � stress(X|� ) to obtain X�

stress(� ). For
the obtainedX�

stress(� ) record the value of� �
stress(X

�
stress(� )|� ).

3. Compute OC�� (X�
stress(� )) for X�

stress(� ) from Step 2 and plug
it into (12) together with the value for� �

stress(X
�
stress(� )|� ) to

obtain a numeric value for p-copstress(X�
stress(� )|� ).

4. Use a metaheuristic to repeat Steps 2 and 3 for di�erent values
of � to �nd the � � that leads to (13).

This shows why using ap-stress is a good default choice; the
inner minimization in Step 2 can be done much faster for ap-
stress than for p-stress and we need only optimize over two stress
hyperparameters in Step 3.

As metaheuristics simulated annealing or population based
strategies like genetic algorithms (Goldberg and Holland1988),
particle swarm optimization (Eberhart and Kennedy1995), esti-
mation of distribution algorithms (Larrañaga and Lozano2002)
or CMA-ES (Hansen and Ostermeier2001) can in principle be
used. However, one problem of �nding (13) is that the inner
minimization (Step 2) can be costly which make the search com-
putationally expensive.8 Thus, the metaheuristic should need a

8For reference, with the data fromSection 6, �tting a P-COPS model with
power stress, 10,000 iterations in Step 2 and 100 iterations in Step 3 on an
Intel Core i7-6700 CPU with 3.4 GHz and R 3.4.4 on Linux Mint 17.3. 64-Bit
takes about 20 min with our prototype implementation. Doing the same

small number of evaluations of Step 2, which puts population-
based strategies at a disadvantage. Considering that the dimen-
sionality of Step 3 is small and that for practical purposes it
makes little di�erence whether estimated values for� are precise
to many digits, arguably a heuristic that may fail to �nd the
global optimum exactly while simultaneously needing much
less evaluations of Step 2 is good enough for most purposes.
For this we adapted the Luus…Jaakola procedure (LJ; Luus and
Jaakola1973) to be used in Step 3 that usually zeros-in in< 150
iterations to an acceptable solution (see the supplementary
document).

5. Empirical Performance of COPS

To make the performance of COPS tangible we show with
simulation the e�ect of COPS as compared to MDS. The data
simulated are bivariate independent Gaussian mixtures withz =
2, 3, 4 clusters, respectively. Speci�cally, the cluster means were
(2, 2), (15, 5), (8, 7), (10, 2) and the respective cluster standard
deviations in both directions(1, 1), (0.8, 7), (1.2, 2), (1.5, 2). We
also added a contamination component with weight 0.1 to each
cluster along the second dimension with cluster means 3 and
4, respectively, and standard deviations of 1. Additionally, we
simulate 10% noise points drawn from an independent bivariate
Gaussian with mean vector(8, 5) and standard deviations of
6. We know the ground truth of which observation belongs to
which cluster. This setup re�ects the density-based clustering
concept we adopted. The cluster centers are reasonably far apart
but the clusters• relatively high variances, contamination and
noise all contribute to them not being well separated (also
visually). We simulated 100 datasets with� 100 objects and with
an equal number of observations per non-noise cluster.

We apply MDS and COPS with a two-dimensional target
space and run DBSCAN (Ester et al.1996) on the con�guration.
DBSCAN•s cluster de�nition coincides with the one used for the
OC� and COPS, where clusters are de�ned as regions of spatial
dense accumulations for given parametersk,  . The latter two
we keep �xed for all examples.

The e�ect of COPS-C is to rearrange points in the con�gu-
ration to achieve a higher clusteredness at some expense of �t
and for P-COPS to project onto a transformed space to achieve
a higher clusteredness when represented in Euclidean space.
In the simulation this means in broad strokes that the objects
should get arranged more compactly in clusters, that clusters are
better separated and that the number of noise points for a given
 decreases as compared to an MDS solution. As COPS is purely
unsupervised and exploratory the result should most naturally
be characterized by internal cluster measures. However, if the
arrangement in clusters re�ects the real clustering structure
then COPS should emphasize it more clearly than MDS does,
thus increasing external cluster validation measures as well.
True to the trade-o� the COPS methods should show higher
stress.

This is corroborated withTable 1where we list summary
statistics (mean and SD) over the 100 simulated datasets of

with approximated power stress and an optimized SMACOF implementa-
tion takes 8 sec.
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Table 1.Summary statistics for the simulation study with 2, 3, 4 clusters.

2 Cluster

Index Statistics MDS COPS-C P-COPS

Stress Mean (SD) 0 (0) 0.11 (0.02) 0.12 (0.08)
OC� Mean (SD) 0.18 (0.04) 0.47 (0.05) 0.26 (0.05)
ARI Mean (SD) 0.72 (0.27) 0.85 (0.03) 0.76 (0.23)
rel.freq. noise Mean (SD) 0.39 (0.31) 0.03 (0.02) 0.2 (0.24)

3 Cluster

Index Statistics MDS COPS-C P-COPS

Stress Mean (SD) 0 (0) 0.11 (0.02) 0.16 (0.08)
OC�50,10,2(X

� ) Mean (SD) 0.13 (0.03) 0.4 (0.07) 0.26 (0.05)
ARI Mean (SD) 0.47 (0.23) 0.75 (0.1) 0.53 (0.36)
rel.freq. noise Mean (SD) 0.58 (0.21) 0.1 (0.12) 0.2 (0.17)

4 Cluster

Index Statistics MDS COPS-C P-COPS

Stress Mean (SD) 0 (0) 0.13 (0.02) 0.17 (0.07)
OC�50,10,2(X

� ) Mean (SD) 0.13 (0.03) 0.48 (0.08) 0.37 (0.06)
ARI Mean (SD) 0.2 (0.08) 0.53 (0.22) 0.53 (0.33)
rel.freq. noise Mean (SD) 0.06 (0.09) 0.03 (0.05) 0.09 (0.09)

NOTE: We list the stress, the OC�, adjusted Rand index (ARI), and relative frequency
of points assigned as noise (rel.freq. noise).

stress, the OC�(X� ) value (as internal cluster validation mea-
sure), adjusted Rand index and Jaccard index (external cluster
agreement with the real clustering including assignment to the
noise cluster) as well as the percentage of points assigned as
noise. We see that over the 100 datasets COPS-C and P-COPS
con�gurations (with the setting of = 10,dmax = 1, andk = 3
the maximum number of observations per cluster) generally
have substantially higher internal and external cluster valida-
tion measures, less variability in the measures and a smaller
percentage of points assigned as noise in DBSCAN compared
to MDS. This means the cluster cohesion and separation has
been increased by the COPS methods; also the correct clusters
were found more o�en by DBSCAN and less observations were
assigned as noise. More detail on cluster recovery of COPS is
given in the supplementary document.

6. Application: COPS and Social Cognition

In this section, we illustrate the two variants of COPS for a
dataset from Tamir et al. (2016) who investigated organizing
principles of humans• neural representations when thinking
about the mental state of other humans (social cognition). They
collected functional magnetic resonance imaging (fMRI) brain
scans from 20 subjects eliciting neural activation patterns during
a task of deciding which of two scenarios would most likely
evoke a given mental state in other humans. From this they
derived a pairwise similarity matrix of the neural representa-
tion of 60 states by correlating the activity patterns. When a
ratio or interval MDS is applied there is little to moderate c-
clusteredness (see the top row inFigure 1). We•ll improve on
that with COPS.

6.1. Finding a Con�guration With COPS-C

We �t a ratio and interval MDS (i.e., COPS-C withv1 = 1,v2 =
0) and three ratio and three interval COPS-C models withv1 =

0.99,v2 = 0.01,v1 = 0.975,v2 = 0.025, andv1 = 0.95,v2 =
0.05, respectively, all with� = (1, 1, 1)	 . Con�gurations are
scaled by the highest standard deviation of any dimension. In
the OC�(X), we usek = 3, q = 2 and = 10. For robustness
dmax is set to 1.03 ( 2 times the maximumr�

�( i) for the ratio MDS
con�guration). For the COPS-C models withv2 > 0 we started
the algorithm from 100 random perturbations of the ratio MDS
and selected the result that shows the overall smallest copstress
value.9

The di�erent con�gurations produced by COPS-C are dis-
played in Figure 1 (con�gurations with v1 = 1, 0.99, and
0.95, respectively) andFigure 2 (con�gurations with v1 =
0.975 with labels). We conducted a permutation goodness-of-�t
test (300 permutations) as described in Mair, Borg, and Rusch
(2016) with perfect indi�erentiation as the null structure which
resulted in ap-value of< 0.001 for all models. The square root
stress values for the di�erent models are 0.38, 0.382, 0.385, 0.39
for ratio and 0.281, 0.282, 0.285, 0.289 for the interval COPS-
C10, respectively.

Sincek = 3, COPS-C looks for clusters of at least triples
of terms. With that in mind the COPS-C results show more
clustered con�gurations with increasing weight on clustered-
ness. One can make out that the states accumulate more clearly
in clusters, that separation between clusters increases and that
there are more accumulations the higher the weightv2 on the
OC�. This is re�ected in the smaller OPTICS Cordillera values
of the con�gurations for the ratio and the interval MDS (0.022
and 0.081, respectively) over the COPS-C models, which had
0.208, 0.345, 0.42 for the ratio versions and 0.188, 0.259, 0.349
for the interval versions, respectively. Note that (particularly for
high v2) some states are placed nearly on top of each other due
to the possibility to increase the OC� by a lot for the price of
only a little more stress. When these data are used for substantive
interpretation instead of illustration of the method, the interval
approach should be preferred.

Inspection of both con�gurations inFigure 2suggests that
higher values of dimension 1 (D1) may stand for a relatively
stronger emotional component in the social cognition of the
state whereas negative D1 values may represent relatively more
mental aspects. They also suggest a number of clusters of states.

6.2. Hyperparameter Optimization With P-COPS

We apply the second COPS variant (P-COPS) to the mental
states data for �nding good power transformations for a clus-
tered appearance in a POST-MDS model, that is, choosing a
nonlinear mapping. Here we allow for di�erent� and � for
illustration of the method; typically one would restrict the
parameters to be equal.

9The so obtained copstress values are smaller than the smallest copstress
values obtained from using a random search with 460 bivariately uniform
initial con�gurations, which places the reported stress with a probability of
at least 99% within 1% of the global optimum.

10For reference, the nonmetric MDS stress value for these data is 0.27 indi-
cating a poor �t of all two-dimensional models based on Kruskal•s •rules of
thumbŽ(cf. Lattin, Carroll, and Green2003). This is not surprising as the data
are quite noisy and we have 60 objects. We are quick to point out that these
stress norms were derived for something like 15 objects and are to be taken
with a grain of salt; they do not replace a proper goodness-of-�t analysis,
see Mair, Borg, and Rusch (2016).
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Figure 2.Visualization of the estimated con�guration for scaling the mental states data with ratio COPS-C (left) and interval COPS-C (right) with weightsv1 =
0.975,v2 = 0.025 and labels. The c-clusteredness index value for neighborhood radius = 10, minimum cluster sizek = 3 and maximum distancedmax = 1.03
was OC�10,3,1.03(X)=0.345 for ratio COPS-C and OC�

10,3,1.03(X)=0.259 for interval COPS-C.

We �t a full POST-MDS with objective function (5) with
w	

ij = � 	
ij . The lower bound of the search space was set to

� lower = (0.7, 0.7,Š2)	 and the upper bound to� upper =
(3, 10, 1)	 . For the OC�(X) we useq = 2, = 10, setdmax = 1
(about 2 times the maximum reachability for the initial solution)
and setk = 2, so this time we are looking for at least pairs
of mental states. Again, we scale con�gurations by the highest
standard deviation of any dimension. Following the suggestion
in (14) the weights werev1 = 1,v2 = 7.13.

The associated POST-MDS model con�guration can be
found in Figure 3. The square root stress value is 0.545. The
POST-MDS leads to a more clustered con�guration with respect
to k = 2 (OC� of 0.24). This is largely attributable to the higher
spread and heavier right tail of the distribution of di�erences of
the transformed proximities.

Many clusters of at least two states are readily appreciable in
the space spanned by an emotional versus mental dualism (D1)
and a physical versus lack of physicality dimension (D2).

The values for the power transformations found by the P-
COPS procedure were� � = (2.24, 7.2,Š0.154)	 , meaning
the POST-MDS puts emphasis on the large proximities and
keeps the remaining ones closer to zero. To check whether
the POST-MDS with� = (2.24, 7.2,Š0.154)	 was indeed
picking up informative di�erences in the proximities rather
than chasing noise from a constant proximity matrix, we again
use the goodness-of-�t permutation test procedure (with 100
permutations). The minimum of the square root stresses was
0.696 and much higher than our observed value of 0.545 leading

Figure 3.Visualization of the con�guration from a POST-MDS for the mental states
data with parameters� = 2.24,� = 7.2,	 = Š 0.154 andwij = � ij obtained from
P-COPS with weightsv1 = 1,v2 = 7.13. The c-clusteredness index value was for
neighborhood radius = 10, minimum cluster sizek = 2 and maximum distance
dmax = 1, OC�10,2,1(X)=0.238.

us to reject the null that the result is an artifact of perfect
indi�erentiation.
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7. Software

All computing was carried out in R (R Core Team2020).
Dedicated functions for conducting both variants of COPS are
available in the R packagecops (Rusch, De Leeuw, and Mair
2019) which is also available as supplementary materials. For
COPS-C there is thecopstressMin function which supports
stresses with ratio, power (incl. multiscale), interval and ordinal
transformations. P-COPS can be carried out withpcops . There
also is a wrapper functioncops that lets one choose the variant.
We also providepowerStressMin to minimize p-stress. See
the package vignette for more. The data �le used in this article
is available under the nameNeuralActivity in the package
MPsychoR (Mair 2017). The plots in this article were created
by base graphics or withggplot2 (Wickham2009) in combi-
nation withggrepel (Slowikowski2018).

8. Conclusions

When PS procedures search for an optimal continuous repre-
sentation of a proximity matrix in low-dimensional space it may
happen that the resulting con�guration lacks clusteredness. We
encounter such a situation for the similarity of neural repre-
sentations of how humans think about mental states of other
humans.

We presented an approach for scaling to increase clus-
teredness of the con�guration (c-clusteredness), enabling easier
visual exploration of any type of density-based discrete struc-
tures from the scaling result. We call this procedure COPS. It
is a complementary procedure to MDS that allows for trans-
formations in the MDS �t measure and additionally considers
the clusteredness for �nding the optimal con�guration. We sug-
gested two variants of COPS: For directly �nding a con�guration
for given transformations (COPS-C) or for selecting transfor-
mations for nonlinear dimensionality reduction (P-COPS). We
illustrated both variants of COPS with a dataset about the dis-
similarity of neural activity when thinking about mental states
in a social cognition task where both variants of COPS increase
the c-clusteredness compared to standard MDS.

Our suggestions will have the strongest e�ect in a situation
with some but little variability in proximities but they are not
limited to that situation. COPS allows to push any MDS con-
�guration toward a more clustered appearance. It can therefore
also be used in cases where clusters are already appreciable
but there is the need for a more pronounced visualization or
when di�erent cluster de�nitions with respect to the number
of observation or the neighborhoods comprising the clusters
should be explored.

The COPS-C con�gurations can be used to visually or in
other ways derive hypotheses about discrete structures, but we
stress that providing an explicit concrete clustering with objects
assigned to clusters or recovering real clusters is not the main
purpose of COPS„although it works well in that regard in com-
bination with a clustering algorithm if the clusters are preserved
by the MDS projection (seeSection 5).

Our suggestion has some speci�c limitations. For one, the
intended use of COPS is in exploratory data analysis to obtain
a scaling and visualization or hyperparameter selection that
shows c-clusteredness in cases when we do not have cluster

labels available. In that way the methods are intended to either
improve the visual display of an MDS result to emphasize cluster
structures or to visually suggest possible point accumulations
from the target con�guration. Con�rmatory usage of COPS, for
example, for hypothesis testing in facet theory or in relation
to theoretically assumed clusters runs in some way counter to
the built-in mechanism of inducing accumulations. Clustering
structures in con�gurations obtained by COPS and the discov-
ered laws of formation therefore need careful investigation out-
side of an exploratory setting„including con�rmatory research
and replication. If spherical clusters and automatic, hard cluster
assignments are sought, if cluster labels are available (e.g., from a
cluster algorithm on the observed proximities) or if the cluster-
ing structure is not preserved in the con�guration, approaches
as presented in the introduction are more suitable than COPS.
Additionally, the number of concrete instances of COPS for
di�erent combinations of hyperparameters is large and it is not
possible to guarantee that every combination is sensible. Future
research can address how to tune hyperparameters for COPS.

Technical limitations also exist: Objective functions based on
stress are notoriously di�cult to optimize, with many local min-
ima. The inclusion of the OPTICS Cordillera adds further dif-
�culties such as possible discontinuities to the already di�cult
problem. For them, the use of general purpose heuristics might
not be e�cient. Also, other approaches to the outer optimization
than the ones suggested may prove to be better for the P-COPS
problem. All of this could be addressed in further research.

Supplementary Materials

Supplementary document:A supplementary document with investiga-
tion into convergence of optimization methods, cluster recovery, and
method comparison. (cops-supplement.pdf , PDF �le)

R package:R-packagecops containing implementations of the ideas
described in the article. (cops_1.1-2.tar.gz , GNU zipped tar
�le)

R script: A �le to reproduce the results, tables and �gures of the article.
(cops-script.R , text �le)

README: A README �le. (README, text �le)

All supplemental �les are contained in a single archive.
(cops-supplement.zip , ZIP �le)
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