
p Values and Alternative Boundaries
for CUSUM Tests

Achim Zeileis

Working Paper No. 78
December 2000



December 2000

SFB
‘Adaptive Information Systems and Modelling in Economics and Management

Science’

Vienna University of Economics
and Business Administration

Augasse 2–6, 1090 Wien, Austria

in cooperation with
University of Vienna

Vienna University of Technology

http://www.wu-wien.ac.at/am

This piece of research was supported by the Austrian Science Foundation (FWF)
under grant SFB#010 (‘Adaptive Information Systems and Modelling in Economics

and Management Science’).



p Values and Alternative Boundaries for CUSUM Tests

Achim Zeileis
Institut für Statistik, Wahrscheinlichkeitstheorie & Versicherungsmathematik

Technische Universität Wien

December 2000

Abstract

Firstly rather accurate approximations to thep value functions of the common Standard CUSUM
test and the OLS-based CUSUM test for structural change are derived. Secondly alternative
boundaries for both tests are suggested and their properties are examined by simulation of ex-
pectedp values. It turns out that the power of the OLS-based CUSUM test for early and late
structural changes can be improved, whereas this weakness of the Standard CUSUM test cannot
be repaired by the new boundaries.
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1 Introduction and summary

One of the first tests on structural change with unknown break point was the Standard CUSUM test,
introduced by Brown, Durbin and Evans (1975), henceforth BDE. Whereas this test is based on recur-
sive residuals, which are independently distributed under the null hypothesis, Ploberger and Krämer
(1992), henceforth PK, suggested a test based on the ordinary least squares residuals. Both are suitable
to test the constancy of regression coefficients in linear regression relationships, although no version is
uniformly superior to the other. For both tests approximations to the asymptoticp value functions are
derived, which are closely linked to the crossing probabilities of (tied down) Brownian motions, the
limiting distributions of the tests. It is much more convenient to havep values instead of the common
critical values for fixed confidence levels like given in BDE (1975) or in Kuan and Hornik (1995),
who put CUSUM tests in a more general context of strutctural change tests. Hansen (1997) gives
approximate asymptoticp values for another class of structural change tests based onF statistics and
here similar results will be obtained for CUSUM tests.
Afterwards alternative boundaries, that are proportional to the standard deviation of (tied down) Brow-
nian motions, are suggested for both tests in order to repair their weakness in detecting structural shifts
early and late in the sample period. Although this cannot be accomplished for the Standard CUSUM
test due to the properties of the recursive residuals under the alternative, the OLS-based CUSUM test
can indeed be improved. This OLS-based CUSUM test with the alternative boundaries has rather
evenly distributed rejection properties for structural changes early, midway and late in the sample
period.
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2 The model and the tests

The standard linear regression model

yt = x>t β + ut (t = 1, . . . , n) (1)

is considered, where at timet, yt is the observation of the dependent variable,xt = (1, xt2, . . . , xtk)>

is ak× 1 vector of observations of the independent variables, with the first component equal to unity,
ut are iid(0,σ2), andβ is thek×1 vector of regression coefficients. The CUSUM tests are concerned
with testing against the alternative that this unkown coefficient vector varies over time. Like in PK
(1992) and in Kr̈amer, Ploberger, Alt (1988), henceforth KPA, it is assumed that the regressorsxt and
the disturbancesut are defined on a common probability space, such that

lim sup
n→∞

1
n

n∑
t=1

||xt||2+δ < ∞ a.s. (2)

for someδ > 0 (|| · || the Euclidean norm), and that

1
n

n∑
t=1

xtx
>
t −→ Q. (3)

for some finite regular matrixQ. Furthermore it is assumed that the disturbancesut are stationary and
ergodic, with

E[ut|At] = 0, E[u2
t |At] = σ2, (4)

whereAt is theσ-field generated by{yt−s, xt−s, ut−s|s ≥ 1}. These assumptions allow in particular
for dynamic models, in which case they imply stability.
The Standard CUSUM test is based on the cumulative sum of the recursive residuals

ũt =
yt − x>t β̂(t−1)√

1 + x>t
(
X(t−1)>X(t−1)

)−1
xt

(t = k + 1, . . . , n), (5)

which have zero mean and varianceσ2 under the null hypothesis.̂β(t−1) is the ordinary least squares
estimation of the regression coefficients based on the observations up tot−1. The path of the CUSUM
quantity is defined as

Wn(t) =
1

σ̃
√
n− k

bk+t(n−k)c∑
i=k+1

ũi (0 ≤ t ≤ 1), (6)

whereσ̃ =
√

1
n−k

∑n
t=k+1(ũt − ¯̃u)2. The meaning of the variablet changes slightly, it is standard-

ized to the interval [0,1].
If there is just a single structural change at fixed timet0 < 1 the mean of the recursive residuals will
be zero only up tot0 and differing afterwards. Hence the CUSUM pathWn(t) will start to leave its
zero mean att0. H0 is rejected wheneverWn(t) crosses eitherc(t) or −c(t) with c(t) = λ + 2λt,
which is equivalent to rejecting the null hypothesis when the test statistic

S = sup
0≤t≤1

∣∣∣∣Wn(t)
1 + 2t

∣∣∣∣ (7)
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is larger thanλ, which depends on the significance level of the test. KPA show that forn→∞

Wn(t) d−→ B(t), (8)

where
d→ denotes convergence in distribution and whereB(t) is the standard Brownian motion.

The OLS-based CUSUM test is defined analogously using the OLS residualsût = yt − x>t β̂ instead
of the recursive residuals. The OLS-based CUSUM quantity is defined fort in [0,1] as

W 0
n(t) =

1
σ̂
√
n

bntc∑
i=1

ûi, (9)

whereσ̂ =
√

1
n−k

∑n
t=1 û

2
t . This path will always not only start in zero but also return to zero, but if

there is structural change att0 it should have a peak close to the break pointt0. H0 is rejected if the
path crosses eitherλ or−λ, which is equivalent to rejecting when the test statistic

S0 = sup
0≤t≤1

∣∣W 0
n(t)

∣∣ (10)

is larger thanλ, which determines the significance level of the test. PK show that forn→∞

W 0
n(t) d−→ B0(t),

whereB0(t) is the standard Brownian bridge or tied down Brownian motion.

3 p values of the CUSUM tests

In the context of these two CUSUM tests usually just three critical values, for the confidence levels
1%, 5% and 10%, are indicated, although it is much more convenient, especially for implementation
in a statistical software package, to have an explicit formula to calculatep values. In this section an
approximation to thep value function of both tests will be derived.
If S is the test statistic and given an observations thep value is by definition:

PH0(S ≥ s). (11)

Thus thep value is the confidence level of the test with critical values.
Like already suggested in the last sectionp values of CUSUM tests are closely related to cross-
ing probabilities of (tied-down) Brownian motions. According to (11) thep value for the Standard
CUSUM test is

PH0(S ≥ s) = PH0

(
|Wn(t)| ≥ s+ 2st for some0 ≤ t ≤ 1

)
. (12)

KPA show that this probability converges forn → ∞ to the corresponding crossing probability of a
Brownian motion. Hence the asymptoticp value functionp(s) is

p(s) = P
(
|B(t)| ≥ s+ 2st for some0 ≤ t ≤ 1

)
. (13)
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Thereforep(s) is the level of the test with critical values. Now an upper and a lower bound for this
function will be derived by applying results of Durbin (1971), who examined the crossing probabilities
of Brownian motions for linear boundaries. In lemma 3 he shows that

P
(
B(t) ≥ at+ b for some0 ≤ t ≤ 1

)
=

1− Φ(a+ b) + exp(−2ab) Φ(a− b), (14)

whereΦ(·) is the standard normal distribution function. Neglecting the probability that a single path
of a Brownian motion crosses both lines, which is sufficiently small for large values ofs, an upper
bound is just twice the value of (14). But this can take values up to 2, whereas the realp value is of
course not larger than 1, so that a proper upper bound is

pU (s) = min
{

1, 2
(

1− Φ(3s) + exp(−4s2) Φ(s)
)}
. (15)

To get an exact formula the probability thatB(t) crosses both lines has to be subtracted. But also for
that probability Durbin’s lemma 7 gives just an upper bound, which neglects three or more crossings:

P
(
B(t1) ≥ s+ 2st1 ∧ B(t2) ≤ −s− 2st2 for some0 ≤ t1, t2 ≤ 1

)
≤

2
(

exp(−4s2)(1− Φ(5s)) + exp(−16s2) (1− Φ(s))
)
. (16)

Subtracting (16) from twice the value of (14) gives a lower bound forp(s):

pL(s) = 2
(

1− Φ(3s) + exp(−4s2) (Φ(s) + Φ(5s)− 1)

− exp(−16s2) (1− Φ(s))
)
. (17)

The major drawback of this approximation is that it takes the value 0 fors = 0, althoughp(0)
obviously equals 1. But figure 1 shows clearly that both functions are rather good approximations to
(13) for sufficiently large values ofs. It can also be seen that up to its maximum, which is around
pL(0.3) = 0.956, pL(s) is closer to the simulatedp values, so that it approximatesp values smaller
than 0.96 very well. Largerp values can be approximated by linear interpolation, but they are not of
great interest anyway. The practically useful smallp values can be calculated equivalently well by
both functions, which differ in 0.85, the critical value to the confidence level 0.1, just by5 · 10−6.
As both functions are easily calculated by any statistical software package, the lower boundary with
linear interpolation for smalls should be recommended for implementation:

p̂(s) =
{

pL(s) s ≥ 0.3
1− 0.1465s s < 0.3

. (18)

Due to the similarity of the test statistics of the OLS-based and the Standard CUSUM test and the
close relation between their asymptotic distributions the determination of thep value functionp0(s)
is analogous to that in the previous section. Hence

p0(s) = PH0

(
|W 0

n(t)| ≥ s for some0 ≤ t ≤ 1
)

asy
= P

(
|B0(t)| ≥ s for some0 ≤ t ≤ 1

)
= P

(
|B(t)| ≥ s for some0 ≤ t ≤ 1 | B(1) = 0

)
, (19)
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Figure 1: p value of the Standard CUSUM test

where
asy
= denotes asymptotic equality. This is again approximated by twice the probability that a tied

down Brownian motion crosses the lines parallel to the x-axis, which is given by lemma 4 in Durbin
(1971). Cutting this function again at 1 gives the upper bound

p0
U (s) = min

{
1, 2 exp(−2s2)

}
. (20)

To derive the lower bound the probability that the path of a Brownian bridge crosses both lines is
needed, for which Durbin’s lemma 6 provides the following inequality

P
(
B0(t1) ≥ s ∧ B0(t2) ≤ −s for some0 ≤ t1, t2 ≤ 1

)
≤

2 exp(−8s2). (21)

For the same reasons as for the Standard CUSUM test a lower bound forp0(s) is given by

p0
L(s) = 2

(
exp(−2s2)− exp(−8s2)

)
. (22)

Figure 2 shows that the properties of the approximations are rather similar to those of the Standard
CUSUM test. Again the upper bound has to be “cut” at thep value 1 and the lower bound provides
the better approximation to the simulatedp values, although it decreases again for small values ofs.
It takes its maximum 0.94 at

√
− ln(0.25)/6 = 0.48 and larger values can again be approximated

by linear interpolation. Practically relevantp values can be calculated equivalently well by both
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Figure 2: p value of the OLS-based CUSUM test

functions as they differ in 1.22, the critical value for the level 0.1, just by1.3 · 10−5. Most suitable for
implementation in a statistical software package is the combination of the lower bound and a linear
interpolation for small values ofs:

p̂0(s) =
{

p0
L(s) s ≥ 0.48

1− 0.1147s s < 0.48
. (23)

4 Alternative boundaries for CUSUM tests

One of the major drawbacks of both CUSUM tests is that they have poor power for early and late
structural changes. To have similar properties over the whole time interval it seems natural to consider
boundaries that are proportional to the standard deviation of the limiting distribution, so that the
rejection probability is spread evenly. Thus the alternative boundary for the Standard CUSUM test is

b(t) = λ
√
t, (24)

as the variance of a Standard Brownian motion (starting in 0) is VAR[B(t)] = t. Similarly the variance
of a Brownian Bridge is VAR[B0(t)] = t(1 − t), so that the alternative boundary for the OLS-based
CUSUM test is

d(t) = λ
√
t(1− t). (25)

The parameterλ depends on the confidence level of the test, which is hard to evaluate, because the
crossing probabilities of (tied-down) Brownian motions are not calculated as easily as for straight
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lines. For this reason BDE chose the boundaryc(t), which is tangential tob(t) in t = 0.5 and the
same argument holds for the linear boundary of the OLS-based CUSUM test. Here the critical values
will be assessed by simulation, but firstly the alternative test statistics will be defined.
Rejecting the null hypothesis when the trajectoryWn(t) either crossesb(t) from (24) or−b(t) is
equivalent to rejecting if the alternative test statistic

SA = sup
ε≤t≤1

∣∣∣∣Wn(t)√
t

∣∣∣∣ , (26)

with ε > 0 exceedsλ. The levelα of the test is linked (asymptotically) to the critical valueλ by the
following equation:

α = P(SA ≥ λ)
asy
= P

(
|B(t)| ≥ b(t) for someε ≤ t ≤ 1

)
. (27)

The pointt = 0 has to be excluded as the rejection conditionB(0) ≥ b(0) = 0 would be satisfied
trivially. It is also not possible to evaluate the supremum on (0,1], because even then the rejection
probability would converge against 1. Hence a compact interval[ε, 1] with ε > 0 is needed, here
ε = 0.001 is used.
To evaluate the pairs of values ofλ andα which solve (27) two methods are used:
Method 1: A Brownian motion is simulated by the cumulative sum ofn = 5000 normally distributed
random numbers; then it is checked whether the absolute value of this simulated Brownian motion

1 2 3 4 5

0.0

0.5

1.0

1.5

λ

α

method 1
method 2

Figure 3: Results of method 1 and 2
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crosses±b(t) (with fixed parameterλ). This is repeatedk = 5000 times and the resulting percentage
of crossings is an estimator for levelα corresponding toλ. The results have been smoothed by a third
order polynomial but have just a mean absolute difference of2 · 10−3 from the original data.
Method 2: This method is an application of the algorithm of Wang and Pötzelberger (1997) for cross-
ing probabilites of Brownian motions for arbitrary boundaries. The boundaryb(t) is approximated by
a piecewise linear function by simple interpolation in 128 sub-intervals of the same size. The formula
that Wang and P̈otzelberger provide is evaluated 200,000 times, which gives an estimation ofα/2
as only the crossing of a single boundary is being considered. Hence the approximation is poor for
smallλ and can take values larger than 1. The advantage however is that an estimation of the standard
deviation is provided as well, which was smaller than10−6 for all simulated values.
A graphical comparison of both methods in figure 3 shows that the results are rather similar for large
values ofλ; in particular the critical values for the common confidence levels 1%, 5% and 10% are
identical:

α = 0.10, λ = 2.90,
α = 0.05, λ = 3.15,
α = 0.01, λ = 3.65. (28)

To compare the shape of the linear and the alternative rejection area both boundaries for the confidence

0.0 0.2 0.4 0.6 0.8 1.0

0

1
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t
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rie

s 
(le

ve
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.0
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b(t)
c(t)

Figure 4: Boundaries of the Standard CUSUM test

level α = 0.01 are plotted in figure 4, the shape for the other confidence levels is rather similar. It
can be seen that the the alternative boundary offers advantages only fort ≤ 0.2. Therefore structural
changes that occur late in the sample can be detected more easily with the linear boundaries; even for
early shifts there is little hope that the advantage of the alternative boundary can be used as figure 5
illustrates: Although the break point is at 10% of the 1000 observations in this simulated data set, the
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Figure 5: Standard CUSUM test with alternative boundaries

CUSUM path actually crosses the boundary much later, where the alternative boundary lies above the
linear one, i.e. the usual Standard CUSUM test would have rejected the null hypothesis anyway.
Now the alternative boundaries for the OLS-based CUSUM test will be investigated in the same way
as it was done for the Standard CUSUM test. To rejectH0 if the OLS-based CUSUM trajectory
W 0
n(t) crosses the alternative boundary±d(t) from (25) is equivalent to rejecting if the alternative

test statistic

S0
A = sup

ε≤t≤1−ε

∣∣∣∣∣ W 0
n(t)√

t(1− t)

∣∣∣∣∣ . (29)

exceedsλ. The critical valuesλ are again linked to the confidence levelα by

α = P(S0
A ≥ λ)

asy
= P

(
|B0(t)| ≥ d(t) for someε ≤ t ≤ 1− ε

)
. (30)

In this case both limits of the interval have to be excluded and with the same arguments as above the
compact interval[ε, 1− ε] (with ε = 0.001) will be considered.
Analogously to method 1 from the previous section the corresponding pairs ofλ andα are evaluated
by simulation with the following result for the common confidence levels 1%, 5% and 10%:

α = 0.10, λ = 3.13,
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Figure 6: Boundaries of the OLS-based CUSUM test

α = 0.05, λ = 3.37,
α = 0.01, λ = 3.83. (31)

Using these results the rejection regions for the OLS-based CUSUM test can be compared. Figure 6
shows both boundaries for the levelα = 0.01. In contrast to the boundaries of the Standard CUSUM
test the new boundary lies under the linear one at the beginning as well as at the end. These advan-
tages can be worth the disadvantage in the middle as figure 7 indicates, which shows the OLS-based
CUSUM trajectory for the same simulated data as above with a structural shift after 10% of the 1000
observations. Whereas the linear boundaries fail to detect the structural change at levelα = 0.01, the
new boundaries are able to find evidence for a structural shift at the same level. The reason for that is
the behaviour of the CUSUM values under the alternative: the path has its peak around the break point
so that the advantages of the alternative boundaries can be used for early and late structural changes.
To emphasize this simulation of expectedp values will be used in the next section.
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Figure 7: OLS-based CUSUM test with linear and alternative boundaries
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5 Simulation of expectedp values

Firstly expectedp values will be defined according to Sackrowitz and Samuel-Cahn (1999). IfT0 is
the test statistic distributed according to the null distributionF0 andT , the test statistic under some
specified alternativeFθ, takes the valuet the usualp value is given by

P(T0 ≥ t|T = t). (32)

Thus the expectedp value results if in (32) is the unconditional probability is considered

EPV (θ) = P(T0 ≥ T ), (33)

which is 1 - expected power (over all possible levels). UnderH0 the expectedp value is obviously
0.5; a small expectedp value indicates good chances to reject the null hypothesis.
Expectedp values seem to be convenient to compare the power of the two OLS-based CUSUM tests
as they don’t depend on the confidence level; the power of the two Standard CUSUM tests won’t be
compared because the alternative boundaries could just offer disadvantages.
To compare the OLS-based CUSUM tests a simple model is chosen like in PK (1992), wherek = 2,
xt = (1, (−1))> andut ∼ nid(0,1). Then the timing, the intensity and the angle of a single shift are
varied in the following way:

βt =
{

β for t ≤ bqnc
β + ∆β for t > bqnc , (34)

and the shift∆β is given by

∆β =
g√
n

(
cosψ
sinψ

)
, (35)

whereψ is the angle between the shift and the mean regressor(1, 0)>. Including the angle is necessary
as neither the Standard nor the OLS-based CUSUM test are able to pick up shifts with an angle of
90◦. The intensity of the shift is||∆β|| = |g|

√
n, which occurs at timet = bqnc with n = 500.

With q taking values 0.1, 0.3, 0.5, 0.7, 0.9 structural changes early, midway and late in the sample
period are covered. In 1000 runs one test statistic underH0 and one under the specified alternative
are simulated and it is checked whether the null test statistic is larger. The empirical probabilities
are reported in table 1 and it can be seen that the linear boundaries cause some weaknesses for early
and late structural changes, whereas the properties of the test are rather good forq between 0.3 and
0.7. The alternative boundaries can solve the weakness for early and late changes and they spread the
rejection probability more evenly over the whole sample period.
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ψ
q g 0◦ 18◦ 36◦ 54◦ 72◦ 90◦

OLS-based CUSUM test with linear boundaries
0.1 4.8 0.395 0.415 0.419 0.489 0.458 0.505

7.2 0.293 0.329 0.374 0.425 0.509 0.483
9.6 0.201 0.207 0.267 0.389 0.484 0.526

12.0 0.124 0.133 0.166 0.331 0.442 0.545
0.3 4.8 0.151 0.198 0.255 0.350 0.449 0.536

7.2 0.045 0.060 0.121 0.221 0.435 0.513
9.6 0.005 0.015 0.029 0.127 0.332 0.544

12.0 0.002 0.001 0.008 0.055 0.308 0.519
0.5 4.8 0.118 0.144 0.224 0.338 0.468 0.509

7.2 0.020 0.024 0.067 0.171 0.381 0.500
9.6 0.004 0.006 0.016 0.065 0.294 0.508

12.0 0.000 0.000 0.003 0.039 0.247 0.504
0.7 4.8 0.179 0.185 0.252 0.364 0.464 0.484

7.2 0.038 0.051 0.119 0.226 0.398 0.512
9.6 0.005 0.010 0.031 0.121 0.377 0.521

12.0 0.000 0.000 0.005 0.056 0.299 0.512
0.9 4.8 0.399 0.431 0.421 0.443 0.488 0.482

7.2 0.334 0.339 0.392 0.412 0.480 0.487
9.6 0.211 0.204 0.268 0.384 0.488 0.507

12.0 0.109 0.136 0.190 0.308 0.458 0.508

OLS-based CUSUM test with alternative boundaries
0.1 4.8 0.367 0.382 0.396 0.436 0.477 0.503

7.2 0.256 0.246 0.308 0.409 0.457 0.494
9.6 0.138 0.145 0.231 0.309 0.455 0.500

12.0 0.054 0.071 0.118 0.260 0.395 0.494
0.3 4.8 0.227 0.243 0.300 0.393 0.456 0.507

7.2 0.066 0.087 0.138 0.293 0.438 0.533
9.6 0.023 0.012 0.037 0.156 0.390 0.539

12.0 0.001 0.003 0.010 0.106 0.346 0.514
0.5 4.8 0.197 0.207 0.262 0.359 0.465 0.505

7.2 0.049 0.075 0.114 0.271 0.422 0.513
9.6 0.004 0.011 0.038 0.141 0.395 0.536

12.0 0.001 0.001 0.007 0.045 0.338 0.520
0.7 4.8 0.224 0.250 0.303 0.415 0.485 0.522

7.2 0.080 0.077 0.170 0.276 0.441 0.523
9.6 0.009 0.016 0.039 0.184 0.394 0.527

12.0 0.002 0.006 0.012 0.095 0.347 0.544
0.9 4.8 0.383 0.376 0.426 0.453 0.482 0.488

7.2 0.229 0.264 0.291 0.397 0.480 0.488
9.6 0.137 0.154 0.203 0.328 0.447 0.500

12.0 0.060 0.074 0.129 0.229 0.404 0.494

Table 1: Simulation of expectedp values of the alternative OLS-based CUSUM test

13



6 Conclusion

Firstly explicit formulae for approximating the (asymptotic)p values for the common Standard and
the OLS-based CUSUM test are derived, which are rather useful for computation and implementation.
Secondly alternative boundaries that are proportional to the standard deviation of the limiting distri-
butions are suggested. They fail to improve that properties of the Standard CUSUM test, but they can
solve the weakness of the OLS-based CUSUM test for early and late structural changes. If a CUSUM
test should be applied to data where the potential break point is not known, the alternative OLS-based
CUSUM test is probably the most recommendable.
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